&

PRINTED WITH

SOYINK|_

TMS320C6x
Assembly Language Tools
User’s Guide

Literature Number: SPRU186C
February 1998

Q?‘ TEXAS
INSTRUMENTS

o

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does Tl warrant or
representthat any license, either express orimplied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of Tl covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 0 1998, Texas Instruments Incorporated

About This Manual

Preface

Read This First

The TMS320C6x Code Generation Tools User’s Guide tells you how to use
these assembly language tools:

oo

Assembler

Archiver

Linker
Cross-reference lister
Hex conversion utility

Before you use this book, you should install the assembly language tools.

This book helps you learn how to use the Texas Instruments assembly
language tools designed specifically for the TMS320C6x 32-bit devices. This
book consists of four parts:

a

Introductory information , consisting of Chapters 1 and 2, gives you an
overview of the assembly language development tools. It also discusses
common object file format (COFF), which helps you to use the
TMS320C6x tools more efficiently. Read Chapter 2, Introduction to Com-
mon Object File Format, before using the assembler and linker.

Assembler description , consisting of Chapters 3 through 5, contains
detailed information about using the assembler. This portion explains how
to invoke the assembler and discusses source statement format, valid
constants and expressions, assembler output, and assembler directives.
It also describes the macro language.

Additional assembly language tools , consisting of Chapters 6 through
9, describes in detail each of the tools provided with the assembler to help
you create executable object files. For example, Chapter 7 explains how
to invoke the linker, how the linker operates, and how to use linker direc-
tives. Chapter 9 explains how to use the hex conversion utility.

Reference material , consisting of Appendixes A through E, provides
technical data about the internal format and structure of COFF object files.
Itdiscusses symbolic debugging directives that the TMS320C6x C compil-
eruses. Finally, itincludes hex conversion utility examples, assembler and
linker error messages, and a glossary.

Notational Conventions

Notational Conventions

This document uses the following conventions:

a
a

The TMS320C62xx core is referred to as TMS320C6x or 'C6x.

Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the spe-
cial typeface for emphasis; interactive displays use a bold version of
the special typeface to distinguish commands that you enter from items
that the system displays (such as prompts, command output, error mes-
sages, etc.).

Here is a sample program listing:

1 00000000 .data

2 00000000 0000002F x .byte 47

3 00000001 00000032 z Jbyte 50

4 00000000 .text
500000000 010401E0 ADD AO0,A1,A2

In syntax descriptions, the instruction, command, or directive is in a bold
typeface and parameters are in an italic typeface. Portions of a syntax that
are in bold should be entered as shown; portions of a syntax that are in
italics describe the type of information that should be entered. Syntax that
is entered on a command line is centered. Syntax that is used in a text file
is left-justified. Here is an example of command-line syntax:

Ink6x [options] filenamey. ... filenamey,

The Ink6x command invokes the linker and has two parameters. The first
parameter, options, is optional (see the next bullet for details). The second
parameter, filename, is required and you can enter more than one.

Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the brack-
ets themselves. This is an example of a command that has an optional
parameter:

hex6x [options] filename

The hex6x command has two parameters. The second parameter, file-
name, is required. The first parameter, options, is optional. Since options
is plural, you can select several options.

Note that .byte does not begin
in column 1.

Notational Conventions

In assembler syntax statements, column 1 is reserved for the first char-
acter of a label or symbol. If the label or symbol is optional, it is usually not
shown. If it is a required parameter, it is shown starting against the left
margin of the shaded box, as in the example below. No instruction, com-
mand, directive, or parameter other than a symbol or label can begin in
column 1.

symbol .usect ” section name”, size in bytes [, alignment]

The symbolis required for the .usect directive and must beginin column 1.
The section name must be enclosed in quotes and the parameter size in
bytes must be separated from the section name by a comma. The align-
ment is optional and, if used, must be separated by a comma.

Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte valueq [, ..., valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, each sepa-
rated from the previous one by a comma.

In program listings and program examples, pipe symbols (||) indicate
parallel instructions, and square brackets ([]) indicate conditional instruc-
tions. This is an example of parallel and conditional instructions:

1 .global tabl, tab2

2

3 00000000 00000028! MVK tabl,A0
4 00000004 00000068! MVKH tab1,A0
5 00000008 008031A9 MVK 99, Al

6 0000000c 010848C0 || ZERO A2

7

8 00000010 80000212 $1:[Al]B $1

9 00000014 01003674 STW A2, *A0++
10 00000018 0087E1A0 SUB Al1Al
11 0000001c 00004000 NOP 3

The instruction on line five executes in parallel with instruction on line six.
The instruction on line eight is conditional: the branch to $1 only occurs if
the contents of Al are not equal to 0.

Read This First Y

Notational Conventions / Related Documentation From Texas Instruments

[Following are other symbols and abbreviations used throughout this docu-

ment:
Symbol Definition Symbol Definition
B, b Suffix — binary integer MSB Most significant bit
H, h Suffix — hexadecimal 0x Prefix — hexadecimal
integer integer
LSB Least significant bit Q. q Suffix — octal integer

Related Documentation From Texas Instruments

vi

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477—8924. When ordering, please
identify the book by its title and literature number.

TMS320C6x Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the 'C6x C compiler. This C compiler accepts ANSI
standard C source code and produces assembly language source code
for the 'C6x generation of devices. This book also describes the
assembly optimizer, which helps you optimize your assembly code.

TMS320C6x C Source Debugger User's Guide (literature number
SPRU188) tells you how to invoke the 'C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C62xx Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code and includes applica-
tion program examples.

TMS320C62xx CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the 'C62xx CPU architecture, instruction
set, pipeline, and interrupts for the TMS320C62xx digital signal proces-
Sors.

TMS320C62xx Peripherals Reference Guide (literature number SPRU190)
describes common peripherals available on the TMS320C62xx digital
signal processors. This book includes information on the internal data
and program memories, the external memory interface (EMIF), the host
port, serial ports, direct memory access (DMA), clocking and phase-
locked loop (PLL), and the power-down modes.

TMS320C62xx Technical Brief (literature number SPRU197) gives an
introduction to the 'C62xx digital signal processor, development tools,
and third-party support.

Trademarks

Trademarks

HP-UX is a trademark of Hewlett-Packard Company.
MS-DOS is a registered trademark of Microsoft Corp.

PC-DOS and OS/2 are trademarks of International Business Machines Corp.
Solaris and SunOS are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows and Windows NT are trademarks of Microsoft Corporation.
XDS is a trademark of Texas Instruments Incorporated.

320 Hotline On-line is a trademark of Texas Instruments Incorporated.
Motorola-S is a trademark of Motorola, Inc.

Tektronix is a trademark of Tektronix, Inc.

Read This First vii

If You Need Assistance

If You Need Assistance . . .

O World-Wide Web Sites

TI Online http://www.ti.com

Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm

DSP Solutions http://www.ti.com/dsps

320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
1 North America, South America, Central America

Product Information Center (PIC) (972) 644-5580

Tl Literature Response Center U.S.A. (800) 477-8924

Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742

U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285

U.S. Technical Training Organization (972) 644-5580

DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com

DSP Modem BBS (281) 274-2323

DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33130701169 Fax:+33130701032 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or+331 30701168
English +33130701165
Francais +33130701164
Italiano +33130701167
EPIC Modem BBS +33 130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

O Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the book.

viii

1

Contents

Introduction to the Software Development Tools — oot 1—1|:|
Provides an overview of the software development tools.
1.1 Software Development TOOIS OVEIVIEWttt 1-2
1.2 T0OIS DESCHPIONS ..\ttt e e e e e 1-3
Introduction to Common Object File Format 2-
Common object file format, or COFF, is the object file format used by the TMS320C6x tools.
This chapter discusses the basic COFF concept of sections and how they can help you use the
assembler and linker more efficiently. Read this chapter before using the assembler and linker.
2.1 SEBCHONS .t 2-2
2.2 How the Assembler Handles Sections 2-4
2.2.1 Uninitialized SECONSt 2-4
2.2.2 Initialized SECHONSot 2-6
2.2.3 Named SECHONSt 2-6
2.2 4 SUDSECHONS .. i 2-7]
2.2.5 Section Program COUNLEISottt e 2-8
2.2.6 Using Sections DIreCtivesot e 2-8
2.3 How the Linker Handles SecCtionsttt 2-11]
2.3.1 Default Memory Allocation 2-12
2.3.2 Placing Sectionsinthe Memory Map ...t 2-13
2.4 RElOCAtiON 2-14
2.5 Runtime Relocation i 2-16
2.6 Loading a Programt 2-17
2.7 Symbolsina COFF File o 2-18
2.7.1 External Symbols 2-18
2.7.2 TheSymbolTable e 2-19
Assembler Description ... 3
Explains how to invoke the assembler and discusses source statement format, valid constants
and expressions, and assembler output.
3.1 ASSEMDBIEr OVEIVIEW . ..o e e e e 3-2
3.2 The Assembler’s Role in the Software Development Flow 3-3
3.3 Invoking the Assembler e 3-4
3.4 Naming Alternate Directories for Assembler Input 3-6
3.4.1 Using the —i Assembler Option 3-6
3.4.2 Usingthe A DIR Environment Variable 3-7

Contents

3.5 Source Statement FOrmat i 3-8

3.5.1 Label Field ... 3-9

3.5.2 Mnemonic Field 3-10

3.5.3 Unit Specifier Field 3-10

3.54 Operand Field 3-11

355 CommentField 3-11

3.6 CONSIANISt 3-12

3.6.1 Binary INtegers . ..ot 3-12

3.6.2 Octal INtEgErS ..o\t 3-12

3.6.3 Decimal INtegers 3-13

3.6.4 Hexadecimal INtEQErS it 3-13

3.6.5 Character Constantsoouiiii 3-13

3.6.6 Assembly-Time Constantsiriiiiii i, 3-14

3.7 Character StiNgS ..ot e 3-15

3.8 SYMDOIS . o 3-16

3.8.1 Labels ... 3-16

3.8.2 LocalLabels 3-16

3.8.3 Symbolic CoNStantsttt 3-19

3.8.4 Defining Symbolic Constants (—d Option)c.cooiiiiiieinn. .. 3-19

3.8.5 Predefined Symbolic Constants i 3-21

3.8.6 Substitution Symbols 3-22

3.0 EXPIESSIONS .« ot ittt e 3-24

3.9 1 O PEIAIOIS .ot ittt e 3-25

3.9.2 Expression Overflow and Underflow 3-25

3.9.3 Well-Defined EXPressionst 3-26

3.9.4 Conditional EXPreSSioNnSttt 3-26

3.9.5 Relocatable Symbols and Legal EXpressionscooovvnn. .. 3-26

310 SOUICE LiStiNGS . . o oottt e e 3-29

3.11 Cross-Reference LiStingsot e 3-32

4 Assembler DIFECUVES 4
Describes the directives according to function and presents the directives in alphabetical order.

4.1 DIreCtivesS SUMMAIY ...ttt e ettt e e e e e 4-2

4.2 Directives That Define SECHiONS o e 4-7

4.3 Directives That Initialize Constants i 4-9

4.4 Directive That Aligns the Section Program Counter ..., 4-12

4.5 Directives That Format the Output Listing 4-13

4.6 Directives That Reference Other Files i 4-15

4.7 Directives That Enable Conditional Assembly 4-16

4.8 Directives That Define Symbols at Assembly Time 4-17

4.9 Miscellaneous DIreCLIVESt e 4-19

4.10 Directives REferenCe 4-20

5 MACIO LANGUAGE .. v oottt e e e e e e e e e e e e

Describes macro directives, substitution symbols used as macro parameters, and how to
create macros.

5.1 USING MACIOS ..ottt e e e e e e 5-2
5.2 DEefiNiNg MACIOS\ttt e e e e

6

Contents

5.3 Macro Parameters/Substitution Symbols 5-5
5.3.1 Directives That Define Substitution Symbols 5-6
5.3.2 Built-In Substitution Symbol Functions o 5-7
5.3.3 Recursive Substitution Symbols 5-9
5.3.4 Forced SUubSHIULION e 5-9
5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols 5-10
5.3.6 Substitution Symbols as Local Variablesin Macros 5-12
5.4 MaCro LIDrarieso 5-13
5.5 Using Conditional Assembly in Macrosouiiiiiiinainiiaannn 5-14
5.6 Using Labels in MaCroso 5-16
5.7 Producing Messages in MacCIrOSuuueieutie it ettt 5-17
5.8 Using Directives to Format the Output Listingt 5-19
5.9 Using Recursive and Nested Macrosouiiiiine i 5-21
5.10 Macro DireCtives SUMMAIY . ..ottt ittt ettt ettt 5-23
Archiver DEsCiption 6
Describes instructions for invoking the archiver, creating new archive libraries, and modifying
existing libraries.
6.1 ArChIVEr OVeIVIEW ..ot e 6-2
6.2 The Archiver’s Role in the Software DevelopmentFlow 6-3
6.3 Invoking the ArChiver 6-4
6.4 Archiver EXamples 6-6
LINKEr DESCHIPHON ..\ttt
Explains how to invoke the linker, provides details about linker operation, discusses linker direc-
tives, and presents a detailed linking example.
7.1 LINKEr OVEIVIEW . .ottt et et e e e e e e e e e e e 7-2
7.2 The Linker’s Role in the Software Development Flow 7-3
7.3 InvoKiNg the LINKEr oo e 7-4
T4 LINKer OptiONS ..ot e 7-5
7.4.1 Relocation Capabilities (—aand —r Options)c.c ... 7-7)
7.4.2 Disable Merge of Symbolic Debugging Information (-b Option) 7-8
7.4.3 C Language Options (—c and —cr OptioNns)ccoiiiinnenennn. 7-9
7.4.4 Define an Entry Point (—e global_symbol Option) 7-9
7.4.5 Set Default Fill Value (—f fill_value Option)t 7-10
7.4.6 Make a Symbol Global (—g symbol Option) 7-10
7.4.7 Make All Global Symbols Static (<h Option) 7-10
7.4.8 Define Heap Size (~heap size Option), 7-11
7.4.9 Alter the Library Search Algorithm (—I Option, —i Option, and
C_DIR/C6X_DIR Environment Variables) 7-11
7.4.10 Disable Conditional Linking (—j Option), 7-14
7.4.11 Create a Map File (—m filename Option) 7-14
7.4.12 Ignore the MEMORY Directive Fill Specification (—n Option) 7-15
7.4.13 Name an Output Module (—0 Option)t 7-15
Contents Xi

Contents

Xii

7.5

7.6
7.7

7.8

7.9

7.10

7.11
7.12

7.13

7.14

7.15
7.16

7.4.14 Specifya Quiet Run (—q Option)t
7.4.15 Strip Symbolic Information (—s Option) i
7.4.16 Define Stack Size (-stack size Option) i
7.4.17 Introduce an Unresolved Symbol (—u symbol Option)

7.4.18 Display a Message When an Undefined Output Section Is Created
(FW OPtION) . e

7.4.19 Exhaustively Read Libraries (—x Option),
Linker Command Files e
7.5.1 Reserved Names in Linker Command Files
7.5.2 Constants in Linker Command Files
Object Libraries e
The MEMORY DIr€CliVE e e
7.7.1 Default Memory Model
7.7.2 MEMORY Directive SYyNtaxouiiuiiniiii i
The SECTIONS DIreCtiVe oot e e
7.8.1 SECTIONS DirecCtive SYNtaxouuiiiiiii i
7.8.2 AllOCAtioN . ..ot
7.8.3 Specifying INnput SECLIONS
Specifying a Section’s Runtime Address ...
7.9.1 Specifying Load and Run ADdressescoviiiiieinnnnnnennan
7.9.2 Uninitialized SECHONSottt
7.9.3 Referring to the Load Address by Using the .label Directive
Using UNION and GROUP Statementso
7.10.1 Overlaying Sections With the UNION Statement
7.10.2 Grouping Output Sections Together i
Special Section Types (DSECT, COPY, and NOLOAD)coiiiiiinn...
Default Allocation Algorithm
7.12.1 How the Allocation Algorithm Creates Output Sections
7.12.2 Reducing Memory Fragmentationc. ...
Assigning Symbols at Link Time
7.13.1 Syntax of Assignment Statements i
7.13.2 Assigningthe SPCtoaSymbol i
7.13.3 AsSSIgNMeNt EXPresSiONS . ..ottt e
7.13.4 Symbols Defined by the Linker i
Creating and Filling Holes
7.14.1 Initialized and Uninitialized Sections
7.14.2 Creating HoIES i
7.14.3 Filling Holes
7.14.4 Explicit Initialization of Uninitialized Sections
Partial (Incremental) LINKING o
LINKING C CO0E . oottt e e
7.16.1 Runtime Initialization
7.16.2 Object Libraries and Runtime Support
7.16.3 Setting the Size of the Stack and Heap Sections

7-16

7-16

7-16

7-17

7-17

7-18

7-19

7-21

7-21

7-22

7-24

7-24

7-24

7-27

7-27

7-30

7-34

7-36

7-36

7-37

7-37

7-40

7-40

7-42

7-43

7-44

7-44

7-45

7-46

7-46

7-47

7-47

7-49

7-50

7-50

7-50

7-52

7-53

7-54

7-56

7-56

7-57

7-57

Contents

7.16.4 Autoinitialization of Variables at Runtime
7.16.5 Initialization of Variables at Load Timet
7.16.6 The —c and —cr Linker Optionst

T.17 Linker EXample oo

Cross-Reference Lister DesCription oo

Explains how to invoke the cross-reference lister to obtain a listing of symbols, their definitions,
and their references in the linked source files.

8.1
8.2
8.3

Hex Conversion Utility Description

Producing a Cross-Reference Listing ...t e
Invoking the Cross-Reference Listercco i,
Cross-Reference Listing Example

ey
7-60
7-61]

.[82
.[8-3
.[8-4

... of |

Explains how to invoke the hex utility to convert a COFF object file into one of several standard
hexadecimal formats suitable for loading into an EPROM programmer.

9.1
9.2

9.3

9.4

9.5
9.6
9.7

9.8
9.9

9.10

The Hex Conversion Utility's Role in the Software Development Flow
Invoking the Hex Conversion Utility et
9.2.1 Invoking the Hex Conversion Utility From the Command Line
9.2.2 Invoking the Hex Conversion Utility With a Command File
Understanding Memory Widths i e
9.3.1 Target Width oo
9.3.2 Specifying the Memory Width
9.3.3 Partitioning Data Into Output Files i,
9.3.4 Specifying Word Order for Qutput Words ...,
The ROMS DIreCLIVEt e e e e
9.4.1 Whento Usethe ROMS Directiveiiiiiiiiiiinannnnann.
9.4.2 An Example of the ROMS Directive ...,
The SECTIONS Dir€Ctive . ..ot e e et
Assigning Output Filenames i e
Image Mode and the —fill Option
9.7.1 Generating a MemMOry IMagettt e
9.7.2 Specifyinga Fill Value
9.7.3 Stepsto FollowinUsinglmageMode i,
Controlling the ROM Device AdAresst e
Description of the Object Formatst i e i
9.9.1 ASCIl-Hex Object Format (—a Option)ciiiiiii i
9.9.2 Intel MCS-86 Object Format (—i Option) i,
9.9.3 Motorola Exorciser Object Format (-m Option)
9.9.4 Texas Instruments SDSMAC Object Format (-t Option)
9.9.5 Extended Tektronix Object Format (—x Option)
Hex Conversion Utility Error MeSSages ..ot et

Contents

. 19-2
. 19-3
. 19-3
. 19-5
. [9-7
. 19-8
. 19-8
. 19-9
9-12
9-14
9-16
9-17
9-20
9-22
9-24
9-24
9-25

Xii

Contents

10 Absolute Lister DESCHPHON ...ttt et et 10-1 |

Xiv

Explains how to invoke the absolute lister to obtain a listing of the absolute addresses of an
object file.

10.1 Producing an Absolute LiStingt 10-2
10.2 Invoking the Absolute LiStert e 10-3
10.3 Absolute Lister EXample 10-5
Common Object File Format A

Contains supplemental technical data about the internal format and structure of COFF object
files.

Al COFF File StrUCtUIe e e e e
A2 File Header StruCIUre e
A.3 Optional File Header Format e
A4 Section Header StruCtUIet e
A.5 Structuring Relocation Information i
A.6 Line Number Table Structuret
A.7 Symbol Table Structure and Contentc.o i, A-13
A7.1 Special Symbols
A7.2 Symbol Name FOrMatonie et |
A.7.3 String Table Structure
A7.4 Storage ClasSesot
A7.5 SymbolValues
A.7.6 Section NUMDbDET
AT T TYPE EN Y o
A.7.8 AuXiliary ENtries
Symbolic Debugging DIreCtives i e B-

Discusses symbolic debugging directives that the TMS320C6x C compiler uses.

ASSEMDIEr ErTOr MESSAUES . ..o oottt et e e e e e e e e e e Ct1 |

Lists the error messages that the assembler issues and gives a description of the condition that
caused each error.

LINKEr ETOr MESSAUES ... vttt et ettt e e e e e et e e e e e e e 0-1 |

Lists the syntax and command, allocation, and I/O error messages that the linker issues and
gives a description of the condition that causes each error.

GlOSSAIY ..ottt
Defines terms and acronyms used in this book.

Figures

TMS320C6x Software Development FIOW 1-2
Partitioning Memory Into Logical Blocks i 2-3
Object Code Generated by the File in Example 2—1 i, 2-10
Combining Input Sections to Form an Executable Object Module 2-12
The Assembler in the TMS320C6x Software Development Flow13-3
The .space and .bes DIreCtiveSottt e et e e . 14-9
The field DIreCtive o e e 4-10
Initialization DIreCHIVES ot e 4-11
The .align DIreCtive o e e 4-12
Double-Precision Floating-Point Format i 4-31]
The field DIreCtive o e e 4-39
Single-Precision Floating-Point Format 4-40
The .USECE DIreCHIVE e e 4-75
The Archiver in the TMS320C6x Software Development Flow [6-3
The Linker in the TMS320C6x Software Development Flow| 7-3
Section Allocation Defined by Example 7—4 7-30
Runtime Execution of Example 7—6 7-39
Memory Allocation Shown in Example 7—7 and Example 7-8 7-41
Autoinitialization at RUNTIME 7-58
Initialization at Load TiMeot 7-59
The Cross-Reference Lister in the TMS320C6x Software Development Flow 8-2
The Hex Conversion Utility in the TMS320C6x Software Development Flow 9-2
Hex Conversion Utility Process FIOW e e 9-7
COFF Data and Memory Widths e 9-9
Data, Memory, and ROM Widths e 9-11;
Varying the Word Order e e 9-13
The infile.out File Partitioned Into Four Output Files 9-17
ASCII-Hex Object Formatt e e e e e 9-28
Intel Hexadecimal Object Formatt e 9-29
Motorola-S Format | 9-30
TI-Tagged ObjeCt FOrmMato e e 9-31
Extended Tektronix Object Format e 9-32
Absolute Lister Development FIOW 10-2
MOAUIE LISt . . . 10-9
MOdUIE 2. ISt . . 10-10
COFF File SUCIUIEottt ettt ettt e e e e e e A-2

Contents XV

Figures

XVi

Sample COFF OBJECE FlEot e e e e e e
Section Header Pointers for the .text Section [A-g
Line NUmMber BIOCKS A-11
Line NUMDber ENtrieso e e e e e A-12
Symbol Table CoNtents A-13
Symbols for BIOCKSo A-16
Symbols for FUNCHIONS o e e e A-17
Symbols for Functions That Return a Structure orunion A-17
String Table Entries for Sample Symbol Names A-18

AN
NFEFPFPNPFPO

£F

| |
O~NOOUODRWNPR

¥
(o]

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21

Tabl

€S

Operators Used in Expressions (Precedence) ...t [3-25
Expressions With Absolute and Relocatable Symbols 3-27
Symbol AttHULES . . .o 3-32
Assembler DIreCtives SUMMANYottt e ettt 4-2
Substitution Symbol Functions and Return Values 5-8
Creating MacCIOS ...ttt ettt e e 5-23
Manipulating Substitution Symbols 5-23
Conditional ASSemMbIY o 5-23
Producing Assembly-Time MeSSagesot 5-24
Formatting the LiSting oot 5-24
Linker OptionNS SUMMANYottt e e ettt e e et et 7-6
Groups of Operators Used in Expressions (Precedence)coiivian.. 7-48
Symbol Attributes in Cross-Reference Listing 8-5
Basic Hex Conversion Utility Optionst e 9-4
Options for Specifying Hex Conversion Formats, [9-27
File Header Contents i e e e A-4
File Header Flags (Bytes 18 and 19)c ittt e A-4
Optional File Header CONtENESttt e e e A-5
Section Header CONENISttt e A-6
Section Header Flags (Bytes 40 Through 43) i A-7)
Relocation Entry Contentsottt et e e A-9
Relocation Types (Bytes 8 and 9) i A-10
Line Number Entry Format i et e e A-11
Symbol Table Entry Contents e A-14
Special Symbols inthe Symbol Table A-15
Symbol Storage ClassSes . ..ot A-19
Special Symbols and Their Storage Classest A-20
Symbol Values and Storage Classes ... A-20
Section NUMDEIS ..o A-21
BaASIC TY PSS . .ottt |A-22
DErVEA TYPES .. ittt e [A-22
Auxiliary Symbol Table Entries Format i A-23
Section Format for Auxiliary Table Entries A-24
Tag Name Format for Auxiliary Table Entries i A-24
End-of-Structure Format for Auxiliary Table Entries it A-24
Function Format for Auxiliary Table Entries i, A-25

Tables

A-22
A-23
A-24
A-25

XViii

Array Format for Auxiliary Table Entries i,

End-of-Blocks/Functions Format for Auxiliary Table Entries
Beginning-of-Blocks/Functions Format for Auxiliary Table Entries
Structure, Union, and Enumeration Names Format for Auxiliary Table Entries

= O

Exampl

€S

Using Sections DIFrECLIVES ot e e e 2-9
Code That Generates Relocation Entries 2-14
Local Labels of the FOrm SN 3-17
Local Labels of the Form name? e 3-18
Using Symbolic Constants Defined on Command Line 3-20
AssembIer LIStiNgo 3-31
An Assembler Cross-Reference LiStingouiuinenenaeaaiaiaan.n. [3-37
SEeCtiONS DIFECHIVESo e E
Macro Definition, Call, and EXpansionc..uiiiiieiii i, 5-4
Calling a Macro With Varying Numbers of Argumentsccoiiunn.. 5-6
The .aSg DIrECHIVE e e e e e 5-6
The .eval DIreCtive 5-7]
Using Built-In Substitution Symbol Functions 5-8
Recursive SUDSHIULION e 5-9
Using the Forced Substitution Operator it 5-10
Using Subscripted Substitution Symbols to Redefine an Instruction 5-11
Using Subscripted Substitution Symbols to Find Substrings [5-11]
The .loop/.break/.endloop DIr€CHVESt e 5-15
Nested Conditional Assembly DireCtives 5-15
Built-In Substitution Symbol Functions in a Conditional Assembly
Code BlOCK . . .o 5-15
Unique Labels in aMacro 5-16
Producing Messages in @ MacCroottt e 5-18
UsSiNg NEeStEA MaCIOS oottt e e e e e e e e e 5-21
USIiNG RECUISIVE MaACIOSttt ettt et ettt ettt i e s 5-22
Linker Command File 7-19
Command File With Linker DIreCtVEScc.ouneeeeie e, [7-20
The MEMORY DIr€CHVE\ttt et e e [7-25
The SECTIONS DIF€CHVEttt et e e e e [7-29
The Most Common Method of Specifying Section Contents 7-34
Copying a Section From SLOW_MEMto FAST MEM oo, 7-38
The UNION Statement e e 7-40
Separate Load Addresses for UNION Sectionst 7-40
Allocate Sections Together 7-42
Default Allocation for TMS320C6X DeVICeSo 7-44
Linker Command File, demo.cmd 7-62
Contents XiX

Examples

XX

Output Map File, demo.map e e e 7-63
Cross-Reference LiStiNgt
A ROMS Directive Example 9-17
Map File Output From Example 9-1 Showing Memory Ranges 9-18

Chapter 1

Introduction to the
Software Development Tools

The TMS320C6x is supported by a set of software development tools, which
includes an optimizing C compiler, an assembly optimizer, an assembler, a
linker, and assorted utilities. This chapter provides an overview of these tools.

The TMS320C6x is supported by the following assembly language develop-
ment tools:

Assembler

Archiver

Linker

Absolute lister
Cross-reference lister
Hex conversion utility

Uoodoo

This chapter shows how these tools fit into the general software tools develop-
ment flow and gives a brief description of each tool. For convenience, it also
summarizes the C compiler and debugging tools; however, the compiler and
debugger are not shipped with the assembly language tools. For detailed
information on the compiler and debugger, and for complete descriptions of
the TMS320C6x, refer to books listed in Related Documentation From Texas
Instruments on page Vi.

Topic Page
1.1 Software Development Tools Overview — _‘L-D
1.2 T00IS DESCHPLONS ..\ttt et 1

1-1

Software Development Tools Overview

1.1 Software Development Tools Overview

Figure 1-1 shows the TMS320C6x software development flow. The shaded
portion highlights the most common development path; the other portions are
optional. The other portions are peripheral functions that enhance the devel-
opment process.

Figure 1-1. TMS320C6x Software Development Flow

. C o
. source .
. files .
« Macro . []
L] L]
o SOurce e o ' o
¢ files @ . . Linear ¢
C compiler * assembly *
\ Yy, o .
Archiver + Assembler + Assembly
%J . source . optimizer
. .
. Macro v = -
¢ library : . Assembly- .
: * Assembler . optimized .
. file :
« COFF - Library-build
Archiver e Object utility
. fles o f
II— . .
S S v e Runtime-
¢ Library of ¢ r— e Support e
e object e >) + library <
. - . Linker
. files .
+ Executable
. COFF
) . file
Hex conversion
utility
v
EPROM Cross-'reference TMS320C6x
programmer lister

| i)

1-2

Tools Descriptions

1.2 Tools Descriptions
The following list describes the tools that are shown in Figure 1-1:

[Theassemblyoptimizer allows you towrite linear assembly code without
being concerned with the pipeline structure or with assigning registers. It
assigns registers and uses loop optimization to turn linear assembly into
highly parallel assembly that takes advantage of software pipelining.

See the TMS320C6x Optimizing C Compiler User’s Guide for more
information.

[J The C compiler accepts C source code and produces TMS320C6x
assembly language source code. A shell program , an optimizer , and an
interlist utility are included in the compiler package:

B The shell program enables you to compile, assemble, and link source
modules in one step.

B The optimizer modifies code to improve the efficiency of C programs.

B The interlist utility interlists C source statements with assembly lan-
guage output to correlate code produced by the compiler with your
source code.

See the TMS320C6x Optimizing C Compiler User’s Guide for more
information.

[The assembler translates assembly language source files into machine
language COFF object files. Source files can contain instructions, assem-
bler directives, and macro directives. You can use assembler directives to
control various aspects of the assembly process, such as the source
listing format, data alignment, and section content. See Chapter 3,
Assembler Description, through Chapter 5, Macro Language, for more
information. See the TMS320C62xx CPU and Instruction Set Reference
Guide for detailed information on the assembly language instruction set.

(1 The linker combines object files into a single executable COFF object
module. As it creates the executable module, it performs relocation and
resolves external references. The linker accepts relocatable COFF object
files (created by the assembler) as input. It also accepts archiver library
members and output modules created by a previous linker run. Linker
directives allow you to combine object file sections, bind sections or sym-
bols to addresses or within memory ranges, and define or redefine global
symbols. See Chapter 7, Linker Description, for more information.

Introduction to the Software Development Tools 1-3

Tools Descriptions

The archiver allows you to collect a group of files into a single archive file,
called a library. For example, you can collect several macros into a macro
library. The assembler searches the library and uses the members that are
called as macros by the source file. You can also use the archiver to collect
agroup of objectfiles into an object library. The linker includes in the library
the members that resolve external references during the link. The archiver
allows you to modify a library by deleting, replacing, extracting, or adding
members. See Chapter 6, Archiver Description, for more information.

You can use the library-build utility to build your own customized
runtime-support library. See the TMS320C6x Optimizing C Compiler
User’s Guide for more information.

The hex conversion utility converts a COFF object file into Tl-Tagged,
ASCII-Hex, Intel, Motorola-S[0, or Tektronix[l object format. The
converted file can be downloaded to an EPROM programmer. See Chap-
ter 9, Hex Conversion Utility Description, for more information.

The cross-reference lister uses object files to produce a cross-reference
listing showing symbols, their definition, and their references in the linked
source files. See Chapter 8, Cross-Reference Lister Description, for more
information.

The main product of this development process is a module that can be
executed ina TMS320C6x device. You can use one of several debugging
tools to refine and correct your code. Available products include:

B Aninstruction-accurate and clock-accurate software simulator
B An XDS emulator

For information about these debugging tools, see the TMS320C6x C
Source Debugger User’s Guide.

Chapter 2

Introduction to Common Object File Format

The assembler and linker create object files that can be executed by a
TMS320C6x device. The format for these object files is called common object
file format (COFF).

COFF makes modular programming easier because it encourages you to
think in terms of blocks of code and data when you write an assembly language
program. These blocks are known as sections. Both the assembler and the
linker provide directives that allow you to create and manipulate sections.

This chapter focuses on the concept and use of sections in assembly language
programs. See Appendix A, Common Object File Format, for details COFF
object file structure.

Topic Page
2.1 SECHONS ...
2.2 How the Assembler Handles Sections 2-

2.3 How the Linker Handles Sections ccoiiiun.... 2-11 |
2.4 RElOCAtION .. oottt 2
2.5 RUNME REIOCAON ..ot e 2
2.6 Loading @ Programceoeiuieii 2}17 |
2.7 SymbolsinaCOFFFile 2

2-1

Sections

2.1 Sections

2-2

The smallest unit of an objectfile is called a section. A sectionis a block of code
or data that will ultimately occupy contiguous space in the memory map. Each
section of an object file is separate and distinct. COFF object files always con-
tain three default sections:

.text section usually contains executable code
.data section usually contains initialized data
.bss section usually reserves space for uninitialized variables

In addition, the assembler and linker allow you to create, name, and link named
sections that are used like the .data, .text, and .bss sections.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections
are initialized; named sections created with the
.sect assembler directive are also initialized.

Uninitialized sections reserve space in the memory map for uninitialized
data. The .bss section is uninitialized; named sec-
tions created with the .usectassembler directive are
also uninitialized.

Several assembler directives allow you to associate various portions of code
and data with the appropriate sections. The assembler builds these sections
during the assembly process, creating an object file organized as shown in
Figure 2—-1.

One of the linker’s functions is to relocate sections into the target system’s
memory map; this function is called allocation. Because most systems contain
several types of memory, using sections can help you use target memory more
efficiently. All sections are independently relocatable; you can place any
section into any allocated block of target memory. For example, you can define
asection that contains an initialization routine and then allocate the routine into
a portion of the memory map that contains ROM.

Figure 2—1 shows the relationship between sections in an object file and a
hypothetical target memory.

Sections

Figure 2—1. Partitioning Memory Into Logical Blocks

Object file Target memory
.bss » RAM
.data I EEPROM
text
» ROM

Introduction to Common Object File Format 2-3

How the Assembler Handles Sections

2.2 How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that
belong in a given section. The assembler has five directives that support this
function:

.bss
.usect
ext
.data
.sect

Uoood

The .bss and .usect directives create uninitialized sections; the .text, .data,
and .sect directives create initialized sections.

You can create subsections of any section to give you tighter control of the
memory map. Subsections are created using the .sect and .usect directives.
Subsections are identified with the base section name and a subsection name
separated by a colon. See section 2.2.4, Subsections, on page 2-7, for more
information.

I
Note: Default Sections Directive

If you do not use any of the sections directives, the assembler assembles
everything into the .text section.

2.2.1 Uninitialized Sections

Uninitialized sections reserve space in TMS320C6x memory; they are usually
allocated into RAM. These sections have no actual contents in the object file;
they simply reserve memory. A program can use this space at runtime for
creating and storing variables.

Uninitialized data areas are built by using the .bss and .usect assembler direc-
tives.

(1 The .bss directive reserves space in the .bss section.

(1 The .usect directive reserves space in a specific uninitialized named sec-
tion.

Eachtime you invoke the .bss or .usect directive, the assembler reserves addi-
tional space in the .bss or the named section.

How the Assembler Handles Sections

The syntaxes for these directives are:

.bss symbol, size in bytes [, alignment]
symbol .usect “section name”’, size in bytes [, alignment]

symbol points to the first byte reserved by this invocation of the .bss
or .usect directive. The symbol corresponds to the name of
the variable that you are reserving space for. It can be refer-
enced by any other section and can also be declared as a
global symbol (with the .global assembler directive).

size in bytes is an absolute expression.

(1 The .bss directive reserves size in bytes bytes in the
.bss section. You must specify a size; there is no default
value.

(1 The .usectdirective reserves size in bytes bytes in sec-
tion name. You must specify a size; there is no default
value.

alignment default values are 4-byte (word) aligned.

section name tells the assembler which named section to reserve space
in. For more information, see section 2.2.3, Named
Sections.

The initialized section directives (.text, .data, and .sect) tell the assembler to
stop assembling into the current section and begin assembling into the indi-
cated section. The .bss and .usect directives, however, do notend the current
section and begin a new one; they simply escape from the current section tem-
porarily. The .bss and .usect directives can appear anywhere in an initialized
section without affecting its contents. For an example, see section 2.2.6, Using
Sections Directives, on page 2-8.

The assembler treats uninitialized subsections (created with the .usect direc-
tive) in the same manner as uninitialized sections. See section 2.2.4, Subsec-
tions, on page 2-7 for more information on creating subsections.

Introduction to Common Object File Format 2-5

How the Assembler Handles Sections

2.2.2

Initialized Sections

Initialized sections contain executable code or initialized data. The contents
of these sections are stored in the object file and placed in TMS320C6x
memory when the program is loaded. Each initialized section is independently
relocatable and may reference symbols that are defined in other sections. The
linker automatically resolves these section-relative references.

Three directives tell the assembler to place code or data into a section. The
syntaxes for these directives are:

text

.data

.sect “section name”

When the assembler encounters one of these directives, it stops assembling
into the current section (acting as an implied end of current section command).
Itthen assembles subsequent code into the designated section until it encoun-
ters another .text, .data, or .sect directive.

Sections are built through an iterative process. For example, when the assem-
bler first encounters a .data directive, the .data section is empty. The state-
ments following this first .data directive are assembled into the .data section
(until the assembler encounters a .text or .sect directive). If the assembler
encounters subsequent .data directives, it adds the statements following
these .data directives to the statements already in the .data section. This
creates a single .data section that can be allocated continuously into memory.

Initialized subsections are created with the .sect directive. The assembler
treats initialized subsections in the same manner as initialized sections. See
section 2.2.4, Subsections, on page 2-7 for more information on creating
subsections.

2.2.3 Named Sections

2-6

Named sections are sections that you create. You can use them like the default
.text, .data, and .bss sections, but they are assembled separately.

For example, repeated use of the .text directive builds up a single .text section
in the object file. When linked, this .text section is allocated into memory as a
single unit. Suppose there is a portion of executable code (perhaps an initiali-
zation routine) that you do not want allocated with .text. If you assemble this
segment of code into a named section, it is assembled separately from .text,
and you can allocate it into memory separately. You can also assemble initial-
ized data that is separate from the .data section, and you can reserve space
for uninitialized variables that is separate from the .bss section.

2.2.4 Subsections

How the Assembler Handles Sections

Two directives let you create named sections:

[The .usect directive creates uninitialized sections that are used like the
.bss section. These sections reserve space in RAM for variables.

[The .sect directive creates initialized sections, like the default .text and
.data sections, that can contain code or data. The .sect directive creates
named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect * section name”, size in bytes [, alignment]
.sect “ section name”’

The section name parameter is the name of the section. Section names are
significant to 200 characters. You can create up to 32 767 separate named
sections. For the .usect and .sect directives, a section name can refer to a
subsection; see section 2.2.4 for detalils.

Each time you invoke one of these directives with a new name, you create a
new named section. Each time you invoke one of these directives with a name
that was already used, the assembler assembles code or data (or reserves
space) into the section with that name. You cannot use the same names with
different directives. That is, you cannot create a section with the .usect direc-
tive and then try to use the same section with .sect.

Subsections are smaller sections within larger sections. Like sections, sub-
sections can be manipulated by the linker. Subsections give you tighter control
of the memory map. You can create subsections by using the .sect or .usect
directive. The syntaxes for a subsection name are:

symbol .usect” section name:subsection name”, size in bytes|, alignment]
.sect” section name:subsection name”’

A subsection is identified by the base section name followed by a colon and
the name of the subsection. A subsection can be allocated separately or
grouped with other sections using the same base name. For example, you
create a subsection called _func within the .text section:

.sect ".text:_func”

Using the linker's SECTIONS directive, you can allocate .text:_func sepa-
rately, or with all the .text sections. See section 7.8.1, SECTIONS Directive
Syntax, on page 7-27, for an example using subsections.

Introduction to Common Object File Format 2-7

How the Assembler Handles Sections

You can create two types of subsections:

[J Initialized subsections are created using the .sect directive. See section
2.2.2, Initialized Sections, on page 2-6.

[Uninitialized subsections are created using the .usect directive. See sec-
tion 2.2.1, Uninitialized Sections, on page 2-4.

Subsections are allocated in the same manner as sections. See Section 7.8,
The SECTIONS Directive, on page 7-27, for more information.

2.2.5 Section Program Counters

The assembler maintains a separate program counter for each section. These
program counters are known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data.
Initially, the assembler sets each SPC to 0. As the assembler fills a section with
code or data, itincrements the appropriate SPC. If you resume assembling into
a section, the assembler remembers the appropriate SPC’s previous value
and continues incrementing the SPC from that value.

The assembler treats each section as if it began at address 0; the linker relo-
cates each section according to its final location in the memory map. For more
information, see Section 2.4, Relocation, on page 2-14.

2.2.6 Using Sections Directives

Example 2—-1 shows how you can build COFF sections incrementally, using
the sections directives to swap back and forth between the different sections.
You can use sections directives to begin assembling into a section for the first
time, or to continue assembling into a section that already contains code. In
the latter case, the assembler simply appends the new code to the code that
is already in the section.

The format in Example 2—-1 is a listing file. Example 2—1 shows how the SPCs
are modified during assembly. A line in a listing file has four fields:

Field 1 contains the source code line counter.

Field 2 contains the section program counter.

Field 3 contains the object code.

Field 4 contains the original source statement.

See Section 3.10, Source Listings, on page 3-29 for more information on inter-
preting the fields in a source listing.

Example 2—-1. Using Sections Directives

How the Assembler Handles Sections

1
2 ** Assemble an initialized table into .data. **
3
4 00000000 .data
500000000 00000011 coeff .word 011h,022h
00000004 00000022
6
7 ** Reserve space in .bss for a variable. ki
8
9 00000000 .bss varl,4
10 00000004 .bss buffer,40
11
12 ** Still in .data section *x
13
14 00000008 00001234 ptr .word 01234h
15
16 ** Assemble code into .text section *x
17
18 00000000 text

19 00000000 00800528 sum: MVK 10,A1
20 00000004 021085E0 ZERO A4

21

22 00000008 01003664 aloop: LDW *A0++,A2
23 0000000c 00004000 NOP 3

24 00000010 0087E1A0 SUB Al1,1,A1

2500000014 021041E0 ADD A2,A4,A4

26 00000018 80000112 [Al] B aloop

27 0000001c 00008000 NOP 5

28

29 00000020 0200007C— STW A4, *+Bl14(varl)

31 ** Assemble another initialized table in .data **

33 0000000c .data
34 0000000c 000000AA ivals .word Oaah, Obbh, Occh
00000010 000000BB

00000014 000000CC
35
36 ** Define another section for more variables. **
37
38 00000000 var2 .usect "newvars”,4
39 00000004 inbuf .usect "newvars”,4
40
41 ** Assemble more code into the .text section. **
42
43 00000024 text
44 00000024 01003664 xmult: LDW *A0++,A2
45 00000028 00006000 NOP 4
46 0000002c 020C4480 MPYHL A2,A3,A4
47 00000030 02800028 MVK var2,A5
48 00000034 02800068— MVKH var2,A5
49 00000038 02140274 STW A4,*A5
50
51 ** Define a named section for interrupt vectors **
52
53 00000000 .sect "vectors”
54 00000000 00000012’ B sum
55 00000004 00008000 NOP 5
Field 1 Field 2 Field 3 Field 4

Introduction to Common Object File Format 2-9

How the Assembler Handles Sections

Figure 2-2. Object Code Generated by the File in Example 2—1

2-10

As Figure 2-2 shows, the file in Example 2—1 creates five sections:

text
.data
vectors

.bss
newvars

The second column shows the object code that is assembled into these sec-
tions; the first column shows the source statements that generated the object

code.

Line numbers

38
39

contains 15 32-bit words of object code.

contains six words of object code.

is anamed section created with the .sect directive; it contains two
words of initialized data.

reserves 44 bytes in memory.

is a named section created with the .usect directive; it contains
eight bytes in memory.

Object code

00800528
021085E0
01003664
00004000
0087E1A0
021041E0
80000112
00008000
0200007C—
01003664
00006000
020C4480
02800028
02800068
02140274

00000011
00000022
00001234
000000AA
000000BB
000000CC

00000000’
00000024

No data—
44 bytes
reserved

No data—
8 bytes
reserved

Section

text

.data

vectors

.bss

newvars

How the Linker Handles Sections

2.3 How the Linker Handles Sections

The linker has two main functions related to sections. First, the linker uses the
sections in COFF object files as building blocks; it combines input sections
(when more than one file is being linked) to create output sections in an execut-
able COFF output module. Second, the linker chooses memory addresses for
the output sections.

Two linker directives support these functions:

1 The MEMORY directive allows you to define the memory map of a target
system. You can name portions of memory and specify their starting
addresses and their lengths.

(1 The SECTIONS directive tells the linker how to combine input sections
into output sections and where to place these output sections in memory.

Subsections allow you to manipulate sections with greater precision. You can
specify subsections with the linker’s SECTIONS directive. If you do not specify
a subsection explicitly, then the subsection is combined with the other sections
with the same base section name.

It is not always necessary to use linker directives. If you do not use them, the
linker uses the target processor’s default allocation algorithm described in
Section 7.12, Default Allocation Algorithm. When you do use linker directives,
you must specify them in a linker command file.

Refer to the following sections for more information about linker command files
and linker directives:

Section Page
7.5 LinkerCommand Files i 7-19
7.7 The MEMORY Directiveuuiiiiiiiiiiinnnannnnns 7-24
7.8 The SECTIONS DIrectiveoouiiiii i 7-2

7.12 Default Allocation Algorithm o i 7-44

Introduction to Common Object File Format 2-11

How the Linker Handles Sections

2.3.1 Default Memory Allocation

Figure 2-3 illustrates the process of linking two files together.

Figure 2-3. Combining Input Sections to Form an Executable Object Module

filel.obj
text
bss Executable
object module Memory map
filel
.data (-text) Space for
—————— variables
Init file2 (.text)
(named section) D D (.text)
filel
(.data) Initialized
= data
file2 (.data)
(.data)
filel
file2.0bj (-bss) Executable
i : —————— code
file2 (.bss)
text (.bss)
bss ‘ ‘ D Init Init
data Tables Tables
Tables

(named section)

2-12

In Figure 23, filel.obj and file2.0bj have been assembled to be used as linker
input. Each contains the .text, .data, and .bss default sections; in addition,
each contains a named section. The executable object module shows the
combined sections. The linker combines the .text section from filel.objand the
.text section from file2.obj to form one .text section, then combines the two
.data sections and the two .bss sections, and finally places the named sections
at the end. The memory map shows how the sections are put into memory; by
default, the linker begins at Oh and places the sections one after the other in
the following order: .text, .const, .data, .bss, .cinit, and then any named
sections in the order they are encountered in the input files.

The C compiler uses the .const section to store variables or arrays declared
as const. The C compiler produces tables of data for autoinitializing global vari-
ables; these variables are stored in a named section called .cinit (see
Figure 7-5 on page 7-57). For more information on the .const and .cinit
sections, see the TMS320C6x Optimizing C Compiler User’s Guide.

How the Linker Handles Sections

2.3.2 Placing Sections in the Memory Map

Figure 2—3 illustrates the linker’s default method for combining sections.
Sometimes you may not want to use the default setup. For example, you may
not want all of the .text sections to be combined into a single .text section. Or
you may want a named section placed where the .data section would normally
be allocated. Most memory maps contain various types of memory (RAM,
ROM, EPROM, etc.) in varying amounts; you may want to place a section in
a specific type of memory.

For further explanation of section placement within the memory map, see the
discussions in Section 7.7, The MEMORY Directive, on page 7-24, and Sec-
tion 7.8, The SECTIONS Directive, on page 7-27.

Introduction to Common Object File Format 2-13

Relocation

2.4 Relocation

The assembler treats each section as if it began at address 0. All relocatable
symbols (labels) are relative to address 0 in their sections. Of course, all
sections cannot actually begin at address 0 in memory, so the linker relocates
sections by:

(1 Allocating them into the memory map so that they begin at the appropriate
address as defined with the linker's MEMORY directive

[Adjusting symbol values to correspond to the new section addresses

[0 Adjusting references to relocated symbols to reflect the adjusted symbol
values

The linker uses relocation entries to adjust references to symbol values. The
assembler creates a relocation entry each time a relocatable symbol is refer-
enced. The linker then uses these entries to patch the references after the
symbols are relocated. Example 2—-2 contains a code segment for a
TMS320C6x device that generates relocation entries.

Example 2-2. Code That Generates Relocation Entries

1

6

.global X

2 00000000 00000012!Z: B X
3 00000004 0180082A
4 00000008 0180006A’
5 0000000c 00004000 NOP 3

7 00000010 0001EO000 Y: IDLE
8 00000014 00000212 B Y
9 00000018 00008000 NOP 5

; Uses an external relocation
MVK Y,B3 ; Uses an internal relocation
MVKH Y,B3 ;Uses an internal relocation

2-14

In Example 2—2, both symbols X and Y are relocatable. Y is defined in the .text
section of this module; X is defined in another module. When the code is
assembled, X has a value of 0 (the assembler assumes all undefined external
symbols have values of 0), and Y has a value of 16 (relative to address 0 in
the .text section). The assembler generates two relocation entries: one for X
and one for Y. The reference to X is an external reference (indicated by the !
character in the listing). The reference to Y is to an internally defined
relocatable symbol (indicated by the * character in the listing).

Relocation

After the code is linked, suppose that X is relocated to address 0x7100. Sup-
pose also that the .text section is relocated to begin at address 0x7200; Y now
has a relocated value of 0x7216. The linker uses the two relocation entries to
patch the two references in the object code:

00000012 B X becomes 00007112
0180082A MVK Y becomes 0180792A
0180006A MVKH Y becomes 0180716A

Each section in a COFF object file has a table of relocation entries. The table
contains one relocation entry for each relocatable reference in the section. The
linker usually removes relocation entries after it uses them. This prevents the
output file from being relocated again (if it is relinked or when it is loaded). A
file that contains no relocation entries is an absolute file (all its addresses are
absolute addresses). If you want the linker to retain relocation entries, invoke
the linker with the —r option (see page 7-7).

Introduction to Common Object File Format 2-15

Runtime Relocation

2.5 Runtime Relocation

2-16

At times you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in an external-
memory-based system. The code must be loaded into external memory, but
it would run faster in internal memory.

The linker provides a simple way to handle this. Using the SECTIONS direc-
tive, you can optionally direct the linker to allocate a section twice: first to set
its load address and again to set its run address. Use the load keyword for the
load address and the run keyword for the run address.

The load address determines where a loader places the raw data for the
section. Any references to the section (such as references to labels in it) refer
toits run address. The application must copy the section from its load address
to its run address before the first reference of the symbol is encountered at
runtime; this does not happen automatically simply because you specify a
separate run address. For an example that illustrates how to move a block of
code at runtime, see Example 7—-6 on page 7-38.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and loads and runs at the same address. If you provide
both allocations, the section is actually allocated as if it were two separate sec-
tions of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant
address is the run address. The linker allocates uninitialized sections only
once; if you specify both run and load addresses, the linker warns you and
ignores the load address.

For a complete description of runtime relocation, see Section 7.9, Specifying
a Section’s Runtime Address, on page 7-36.

Loading a Program

2.6 Loading a Program

The linker produces executable COFF object modules. An executable object
file has the same COFF format as object files that are used as linker input; the
sections in an executable object file, however, are combined and relocated
into target memory.

To run a program, the data in the executable object module must be trans-
ferred, or loaded, into target system memory. Several methods can be used
for loading a program, depending on the execution environment. Three com-
mon situations are described below:

[The TMS320C6x debugging tools, including the XDS[(Extended Devel-
opment System) emulator and the simulator, have built-in loaders. Each
ofthese tools contains a LOAD command that invokes a loader; the loader
reads the executable file and copies the program into target memory.

[You can use the hex conversion utility (hex6x, which is shipped as part of
the assembly language package) to convert the executable COFF object
module into one of several object file formats. You can then use the con-
verted file with an EPROM programmer to burn the program into an
EPROM.

1 A standalone loader can be invoked by the load6x command and the
name of the executable object file. The standalone loader reads the
executable file, copies the program into the simulator and executes it,
displaying any C 1/O.

Introduction to Common Object File Format 2-17

Symbols in a COFF File

2.7 Symbols in a COFF File

A COFF file contains a symbol table that stores information about symbols in
the program. The linker uses this table when it performs relocation. Debugging
tools can also use the symbol table to provide symbolic debugging.

2.7.1 External Symbols

External symbols are symbols that are defined in one module and referenced
in another module. You can use the .def, .ref, or .global directive to identify
symbols as external:

.def The symbol is defined in the current module and used in
another module.

ref The symbol is referenced in the current module, but defined
in another module.

.global The symbol may be either of the above.

The following code segment illustrates these definitions.

.def x
ref y
.global z
.global q
g: B B3
NOP 4
MVK 1,1
x: MV AQAl
MVK y,B3
MVKH y,B3
B z
NOP 5

Inthis example, the .def definition of x says that it is an external symbol defined
in this module and that other modules can reference x. The .ref definition of
y says that it is an undefined symbol that is defined in another module. The
.global definition of z says that it is defined in some module and available in
this file. The .global definition of g says that it is defined in this module and that
other modules can reference qg.

The assembler places X, y, and z in the object file's symbol table. When the file
is linked with other object files, the entries for x and g resolve references to x
and g in other files. The entries for y and z cause the linker to look through the
symbol tables of other files for y’'s and z’s definitions.

The linker must match all references with corresponding definitions. If the
linker cannot find a symbol’s definition, it prints an error message about the
unresolved reference. This type of error prevents the linker from creating an
executable object module.

2-18

Symbols in a COFF File

2.7.2 The Symbol Table

The assembler always generates an entry in the symbol table when it encoun-
ters an external symbol (both definitions and references defined by one of the
directives in section 2.7.1). The assembler also creates special symbols that
point to the beginning of each section; the linker uses these symbols to relo-
cate references to other symbols.

The assembler does not usually create symbol table entries for any symbols
other than those described above, because the linker does not use them. For
example, labels are not included in the symbol table unless they are declared
with the .global directive. For symbolic debugging purposes, it is sometimes
useful to have entries in the symbol table for each symbol in a program. To
accomplish this, invoke the assembler with the —s option (see page 3-5).

Introduction to Common Object File Format 2-19

Chapter 3

Assembler Description

The assembler translates assembly language source files into machine lan-
guage object files. These files are in common object file format (COFF), which
is discussed in Chapter 2, Introduction to Common Object File Format, and
Appendix A, Common Object File Format. Source files can contain the follow-
ing assembly language elements:

Assembler directives described in Chapter 4
Macro directives described in Chapter 5

Assembly language instructions described in the TMS320C62xx CPU
and Instruction Set Reference Guide

Topic Page
3.1 Assembler OVErvieWw ...t 3
3.2 The Assembler’s Role in the Software Development Flow — 3-3 |:|
3.3 Invoking the Assembler 34
3.4 Naming Alternate Directories for Assembler Input ~ 3-6 |:|
3.5 Source Statement FOrmMatcouiuirineirenranean... 318 |
3.6 Constants p-12
3.7 CharaCter StNGS . ..ottt 315 |
3.8 SYMDOIS ..
3.9 EXPreSSIONS ..ottt -24
3.10 Source LiStiNgS ..ottt 3
3.11 Cross-Reference Listings 3

Assembler Overview

3.1 Assembler Overview

The 2-pass assembler does the following:

4

a

Processes the source statements in a text file to produce a relocatable
object file

Produces a source listing (if requested) and provides you with control over
this listing

Allows you to segment your code into sections and maintain a section pro-
gram counter (SPC) for each section of object code

Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

Allows conditional assembly

Supports macros, allowing you to define macros inline or in a library

3.2 The Assembler’s Role in the Software Development Flow

The Assembler’s Role in the Software Development Flow

Figure 3—1 illustrates the assembler’s role in the software development flow.
The shaded portion highlights the most common assembler development
path. The assembler accepts assembly language source files as input, both

those you create and those created by the TMS320C6x C compiler.

Figure 3—-1. The Assembler in the TMS320C6x Software Development Flow

.
.
.
.
.
.

C
source
files

ee 0o

?

. Macro . []
SOt . Assembly .
- files - C compiler . optimizer
\)y * source ¢
Archiver . Assembler « Assembly
\TJ . source . optimizer
¢ Macro ¢ v . .
¢ library ¢ :Assgmbly-:
* * Assembler . optimized
. file :
+ COFF . Library-build
Archiver e oObject o utility
. files . f
L— " N
S S v * Runtime- -«
° Li . o support
. ng[)??étm . NG : Iibﬁgry
. - o Linker
. files .
+ Executable «
. COFF .
] . file .
Hex conversion
utility
\ 4
EPROM Cross-'reference TMS320C6x
programmer lister

Assembler Description

Invoking the Assembler

3.3

Invoking the Assembler

To invoke the assembler, enter the following:

asm6éx [input file [object file [listing file]]] [options]

asme6x

input file

object file

listing file

options

is the command that invokes the assembler.

names the assembly language source file. If you do not supply
an extension, the assembler uses the default extension .asm. If
you do not supply an input filename, the assembler prompts you
for one.

names the object file that the assembler creates. If you do not
supply an extension, the assembler uses .obj as a default. If you
do not supply an objectfile, the assembler creates afile that uses
the input filename with the .obj extension.

names the optional listing file that the assembler can create. See
Section 3.10, Source Listings, on page 3-29, for information on
the content and format of the listing file.

1 If you do not supply a listing file name, the assembler does
not create one unless you use the —I (lowercase L) option or
—X option.

1 If you supply a listing file name but do not supply an exten-
sion for that filename, the assembler uses ./st as the default
extension.

identify the assembler options that you want to use. Options are
not case sensitive and can appear anywhere on the command
line following the command. Precede each option with a hyphen.
Single-letter options without parameters can be combined; for
example, —Ic is equivalent to —| —c. Options that have parame-
ters, such as —i, must be specified separately.

—C makes case insignificant in the assembly language files.
For example, —c makes the symbols ABC and abc equiv-
alent. If you do not use this option, case is significant (this
is the default).

—d —dname [=value] sets the name symbol. This is equiva-
lent to inserting name .set [valug] at the beginning of the
assembly file. If valueis omitted, the symbolis setto 1. For
more information, see section 3.8.4, Defining Symbolic
Constants (—d Option), on page 3-19.

Invoking the Assembler

enables assembler source debugging in the C source
debugger. Line information is output to the COFF file for
every line of source in the assembly language source file.
You cannot use the —g option on assembly code that
contains .line directives.

—hcfilename tells the assembler to copy the specified file
for the assembly module. The file is inserted before
source file statements. The copied file appears in the as-
sembly listing files.

—hifilename tells the assembler to include the specified
file for the assembly module. The file is included before
source file statements. The included file does not appear
in the assembly listing files.

specifies a directory where the assembler can find files
named by the .copy, .include, or .mlib directives. The for-
mat of the —i option is —ipathname. You can specify up to
32 directories in this manner; each pathname must be
preceded by the —i option. For more information, see sec-
tion 3.4.1, Using the —i Assembler Option, on page 3-6.

(lowercase L) produces a listing file with the same name
as the input file with a ./st extension.

suppresses the banner and progress information (assem-
bler runs in quiet mode).

puts all defined symbols in the object file’s symbol table.
The assembler usually puts only global symbols into the
symbol table. When you use —s, symbols defined as
labels or as assembly-time constants are also placed in
the table.

—u name undefines the predefined constant name, which
overrides any —d options for the specified constant.

produces a cross-reference table and appends it to the
end of the listing file; it also adds cross-reference informa-
tion to the object file for use by the cross-reference utility.
If you do not request a listing file but use the —x option, the
assembler creates a listing file automatically, naming it
with the same name as the input file with a ./st extension.

Assembler Description 3-5

Naming Alternate Directories for Assembler Input

3.4 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from
external files. The .copy and .include directives tell the assembler to read
source statements from another file, and the .mlib directive names a library
that contains macro functions. Chapter 4, Assembler Directives, contains
examples of the .copy, .include, and .mlib directives. The syntax for these
directives is:

.copy ["]filename|[”]
.include [”"]filename[”]

.mlib ["1filename[”]

The filename names a copy/include file that the assembler reads statements
from or a macro library that contains macro definitions. The filename may be
a complete pathname, a partial pathname, or a filename with no path informa-
tion. The assembler searches for the file in the following locations in the order
given:

1) The directory that contains the current source file. The current source file
is the file being assembled when the .copy, .include, or .mlib directive is
encountered.

2) Any directories named with the —i assembler option
3) Any directories named with the A_DIR environment variable

Because of this search hierarchy, you can augment the assembler’s directory
search algorithm by using the —i assembler option (described in section 3.4.1)
or the A_DIR environment variable (described in section 3.4.2).

3.4.1 Using the —i Assembler Option

The —i assembler option names an alternate directory that contains copy/
include files or macro libraries. The format of the —i option is as follows:

asm6x —i pathname source filename [other options]

You can use up to 32 —i options per invocation; each —i option names one
pathname. In assembly source, you can use the .copy, .include, or .mlib direc-
tive without specifying path information. If the assembler does not find the file
in the directory that contains the current source file, it searches the paths
designated by the —i options.

Naming Alternate Directories for Assembler Input

For example, assume that a file called source.asm is in the current directory;
source.asm contains the following directive statement:

.copy "copy.asm”

Assume the following paths for the copy.asm file:
UNIXO: /320tools/files/copy.asm

Windows[: c¢:\320tools\files\copy.asm

Operating System Enter
UNIX asm6x —i/320tools/files source.asm
Windows asm6x —ic:\320tools\files source.asm

If you invoke the assembler for your system as as shown above, the assembler
first searches for copy.asm in the current directory because source.asm (the
input file) is in the current directory. Then the assembler searches in the
directory named with the —i option.

3.4.2 Using the A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string
to. The assembler uses the A_DIR environment variable to name alternate
directories that contain copy/include files or macro libraries. The command
syntax for assigning the environment variable is as follows:

Operating System Enter
UNIX setenv A_DIR " pathname;;pathnamey; . .."
Windows set A_DIR= pathnamey,pathnamey; . ..

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or with blanks. In
assembly source, you can use the .copy, .include, or .mlib directive without
specifying path information. If the assembler does not find the file in the direc-
tory that contains the current source file or in directories named by the —i
option, it searches the paths named by the environment variable.

For setup information for the A_DIR environment variable, refer to the code
generation tools CD-ROM insert.

Assembler Description 3-7

Source Statement Format

3.5 Source Statement Format

TMS320C6x assembly language source programs consist of source state-
ments that can contain assembler directives, assembly language instructions,
macro directives, and comments. A source statement can contain five ordered
fields (label, mnemonic, unit specifier, operand list, and comment). The gen-
eral syntax for source statements is as follows:

[label:]]1 [l [[registenl]] mnemonic [unit specifier] [operand list] [;comment]

Following are examples of source statements:

two set 2 ; Symbol Two = 2
Label: MVK two,A2 ; Move 2 into register A2
.word 016h : Initialize a word with 016h

The 'C6x assembler reads up to 200 characters per line. Any characters
beyond 200 are truncated. Keep the operational part of your source state-
ments (that is, everything other than comments) less than 200 characters in
length for correct assembly. Your comments can extend beyond the 200-char-
acter limit, but the truncated portion is not included in the listing file.

Follow these guidelines:
[Allstatements mustbeginwith alabel, a blank, an asterisk, or a semicolon.
(1 Labels are optional; if used, they must begin in column 1.

[One or more blanks must separate each field. Tab characters are inter-
preted as blanks. You must separate the operand list from the preceding
field with a blank.

(1 Comments are optional. Comments that begin in column 1 can begin with
an asterisk or a semicolon (* or ;), but comments that begin in any other
column must begin with a semicolon.

(O Ifyou set up a conditional instruction, the register must be surrounded by
square brackets.

[The unit specifier is optional. If you do not specify the functional unit, the
assembler assigns the functional unit based on the mnemonic field.

[A mnemonic cannot begin with O or 1 or it will be interpreted as a label.

The following sections describe each of the fields.

3.5.1 Label Field

Source Statement Format

Labels are optional for all assembly language instructions and for most (but
not all) assembler directives. When used, a label must begin in column 1 of a
source statement. A label can contain up to 128 alphanumeric characters
(A-Z,a-z,0-9, _,and$). Labels are case sensitive (except when the —c option
is used), and the first character cannot be a number. A label can be followed
by a colon (:). The colon is not treated as part of the label name. If you do not
use a label, the first character position must contain a blank, a semicolon, or
an asterisk. You cannot use a label with an instruction that is in parallel with
a previous instruction.

Whenyou use alabel, its value is the current value of the SPC. The label points
to the statement it is associated with. For example, if you use the .word direc-
tive to initialize several words, a label points to the first word. In the following
example, the label Start has the value 40h.

9 * Assume some code was assembled
10 00000040 0000000A Start: .word 0Ah,3,7
00000044 00000003
00000048 00000007

A label on a line by itself is a valid statement. The label assigns the current
value of the section program counter to the label; this is equivalent to the fol-
lowing directive statement:

label .equ $; $ provides the current value of the SPC

When a label appears on a line by itself, it points to the instruction on the next
line (the SPC is not incremented):

1 00000000 Here:
2 00000000 00000003 .word 3

Ifyou do not use alabel, the character in column 1 must be a blank, an asterisk,
or a semicolon.

Assembler Description 3-9

Source Statement Format

3.5.2 Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in
column 1; if it does, itis interpreted as a label. The mnemonic field can begin
with one of the following items:

(1 Pipe symbols (||) indicate instructions that are in parallel with a previous
instruction. You can have up to eight instructions running in parallel. The
following example demonstrates five instructions running in parallel:

Inst1

Inst2

Inst3 These five instructions run in
Inst4 parallel with the first instruc-
Inst5 tion.

Inst6

Inst7

(1 Square brackets ([]) indicate conditional instructions. The machine-
instruction mnemonic is executed based on the value of the register within
the brackets; valid register names are A1, A2, BO, B1, and B2. The instruc-
tion is executed if the value of the register is nonzero. If the register name
is preceded by an exclamation point (!), then the instruction is executed
if the value of the register is 0. For example:

[A1] ZERO A2 ; If Al is not equal to zero, A2 =0

Next, the mnemonic field contains one of the following items:

(1 Machine-instruction mnemonic (such as ADDK, MVKH, B)
(1 Assembler directive (such as .data, .list, .equ)
[Macro directive (such as .macro, .var, .mexit)

(] Macro call

3.5.3 Unit Specifier Field

The unit specifier field is an optional field that follows the mnemonic field for
machine-instruction mnemonics. The unit specifier field begins with a period
(.) followed by a functional unit specifier. In general, one instruction can be
assigned to each functional unit in a single instruction cycle. There are eight
functional units, two of each functional type:

3-10

.D1 and .D2
.L1 and .L2

.M1 and .M2
.S1 and .S2

Data/addition/subtraction
ALU/compares/long data arithmetic
Multiply

Shift/ALU/branch/bit field

ALU refers to an arithmetic logic unit.

Source Statement Format

There are several ways to use the unit specifier field:
1 You can specify the particular functional unit (for example, .D1).

1 You can specify only the functional type (for example, .M), and the assem-
bler assigns the specific unit (for example, .M2).

[If you do not specify the functional unit, the assembler assigns the func-
tional unit based on the mnemonic field.

For more information on functional units, including which assembly instruc-
tions require which functional type, see the TMS320C62xx CPU and Instruc-
tion Set Reference Guide.

3.5.4 Operand Field

The operand field follows the mnemonic field and contains one or more oper-
ands. The operand field is not required for all instructions or directives. An
operand consists of the following items:

[J Symbols (see Section 3.8 on page 3-16)
[J Constants (see Section 3.6 on page 3-12)

1 Expressions (combination of constants and symbols; see Section 3.9 on
page 3-24)

You must separate operands with commas.

3.5.5 Comment Field

A comment can begin in any column and extends to the end of the source line.
A comment can contain any ASCII character, including blanks. Comments are
printed in the assembly source listing, but they do not affect the assembly.

A source statement that contains only a comment is valid. If it begins in col-
umn 1, it can start with a semicolon (;) or an asterisk (*). Comments that begin
anywhere else on the line must begin with a semicolon. The asterisk identifies
a comment only if it appears in column 1.

Assembler Description 3-11

Constants

3.6 Constants
The assembler supports six types of constants:

Binary integer

Octal integer
Decimal integer
Hexadecimal integer
Character
Assembly-time

Uooooo

The assembler maintains each constant internally as a 32-bit quantity.
Constants are not sign extended. For example, the constant 00FFh is equal
to OOFF (base 16) or 255 (base 10); it does notequal —1. However, when used
with the .byte directive, —1 is equivalent to O0FFh.

3.6.1 Binary Integers

A binary integer constant is a string of up to 32 hinary digits (0s and 1s)
followed by the suffix B (or b). If fewer than 32 digits are specified, the assem-
bler right justifies the value and fills the unspecified bits with zeros. These are
examples of valid binary constants:

00000000B Constant equal to 01 or O1g
0100000b Constant equal to 321 or 2016
01b Constant equal to 11g or 114
11111000B Constant equal to 2481 or OF815

3.6.2 Octal Integers

An octal integer constantis a string of up to 11 octal digits (0 through 7) followed
by the suffix Q (or q). These are examples of valid octal constants:

10Q Constant equal to 81 or 814

010 Constant equal to 81 or 814 (C format)
100000Q Constant equal to 32 7681 or 800014
226q Constant equal to 1501g or 961¢

3-12

Constants

3.6.3 Decimal Integers

A decimal integer constant is a string of decimal digits ranging from
—2147 483 648 to 4 294 967 295. These are examples of valid decimal con-

stants:

1000 Constant equal to 10001 or 3E84¢
-32768 Constant equal to —32 7681 or 800014
25 Constant equal to 251 or 1945

3.6.4 Hexadecimal Integers

A hexadecimal integer constant is a string of up to eight hexadecimal digits fol-
lowed by the suffix H (or h). Hexadecimal digits include the decimal values 0-9
and the letters A—F or a—f. A hexadecimal constant must begin with a decimal
value (0-9). If fewer than eight hexadecimal digits are specified, the assembler
right justifies the bits. These are examples of valid hexadecimal constants:

78h Constant equal to 1201 or 00781¢

0x78 Constant equal to 1201 or 007814 (C format)
OFh Constant equal to 151 or 000F 14

37ACh Constant equal to 14 2521 or 37AC1g

3.6.5 Character Constants

A character constantis a single character enclosed in single quotes. The char-
acters are represented internally as 8-bit ASCII characters. Two consecutive
single quotes are required to represent each single quote thatis part of a char-
acter constant. A character constant consisting only of two single quotes is
valid and is assigned the value 0. These are examples of valid character
constants:

a Defines the character constant a and is represented internally as 6114

'C’ Definesthe character constant Cand is represented internally as 431 g

Defines the character constant 'and is represented internally as 274¢
Defines a null character and is represented internally as 001¢

Notice the difference between character constants and character strings.
(Section 3.7 discusses character strings). A character constant represents a
single integer value; a string is a sequence of characters.

Assembler Description 3-13

Constants

3.6.6 Assembly-Time Constants

3-14

If you use the .set directive (see page 4-62) to assign a value to a symbol, the
symbol becomes a constant. To use this constant in expressions, the value
that is assigned to it must be absolute. For example:

sym .set3
MVK sym,B1

You can also use the .set directive to assign symbolic constants for register
names. In this case, the symbol becomes a synonym for the register:

sym .setBl
MVK 10,sym

Character Strings

3.7 Character Strings

A character string is a string of characters enclosed in double quotes. Double
quotes that are part of character strings are represented by two consecutive
double quotes. The maximum length of a string varies and is defined for each
directive that requires a character string. Characters are represented inter-
nally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program” defines the 14-character string sample program.
"PLAN ™C™” defines the 8-character string PLAN "C.”
Character strings are used for the following:

Filenames, as in .copy "filename”

Section names, as in .sect "section name”

Data initialization directives, as in .byte "charstring”
Operands of .string directives

Uoodd

Assembler Description 3-15

Symbols

3.8 Symbols

3.8.1 Labels

3.8.2 Local Labels

3-16

Symbols are used as labels, constants, and substitution symbols. A symbol
name is a string of up to 200 alphanumeric characters (A-Z, a-z, 0-9, $,
and _). The first character in a symbol cannot be a number, and symbols can-
not contain embedded blanks. The symbols you define are case sensitive; for
example, the assembler recognizes ABC, Abc, and abc as three unique sym-
bols. You can override case sensitivity with the —c assembler option (see
page 3-4). A symbol is valid only during the assembly in which it is defined,
unless you use the .global directive to declare it as an external symbol (see
section 2.7.1 on page 2-18).

Symbols used as labels become symbolic addresses that are associated with
locations in the program. Labels used locally within a file must be unique. Mne-
monic opcodes and assembler directive names without the . prefix are valid
label names.

Labels can also be used as the operands of .global, .ref, .def, or .bss directives;
for example:

.global labell

label2: MVK label2, B3
MVKH label2, B3
B labell
NOP 5

Local labels are special labels whose scope and effect are temporary. A local
label can be defined in two ways:

[9$n, where n is a decimal digit in the range 0-9. For example, $4 and $1
are valid local labels. See Example 3-1.

[name?, where name is any legal symbol name as described above. The
assembler replaces the question mark with a period followed by a unique
number. When the source code is expanded, you will not see the unique
number in the listing file. Your label appears with the question mark as it
did in the source definition. You cannot declare this label as global. See
Example 3-2.

Normal labels must be unique (they can be declared only once), and they can
be used as constants in the operand field. Local labels, however, can be
undefined and defined again. Local labels cannot be defined by directives.

Symbols

A local label can be undefined or reset in one of these ways:

(1 By using the .newblock directive

[By changing sections (using a .sect, .text, or .data directive)

[By entering an include file (specified by the .include or .copy directive)
[J By leaving an include file (specified by the .include or .copy directive)

Example 3—1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

$1:
SUB Al1,1,A1
[Al]B $1
SUBC A3,A0,A3
NOP 4

.newblock ; undefine $1 to use it again

$1 SUB A2,1,A2
[A2]B $1
MPY A3,A3A3
NOP 4

The following code uses a local label illegally:

$1:
SUB Al1,1Al
[Al]B $1
SUBC A3,A0,A3
NOP 4
$1 SUB A2,1,A2 ; WRONG — $1 is multiply defined
[A2]B $1
MPY A3,A3,A3
NOP 4

The $1 label is not undefined before being reused by the last line of code.
Therefore, $1 is redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label
and is called more than once, the assembler issues a multiple-definition error.
If you use a local label and .newblock within a macro, however, the local label
is used and reset each time the macro is expanded.

Up to ten local labels can be in effect at one time. After you undefine a local
label, you can define itand use it again. Local labels do not appear in the object
code symbol table.

Because local labels are intended to be used only locally, branches to local
labels are not expanded in case the branch’s offset is out of range.

Assembler Description 3-17

Symbols

Example 3-2. Local Labels of the Form name?

** First definition of local label mylab ke
nop

mylab? nop
B mylab?
nop 5

** |nclude file has second definition of mylab b
.copy "a.inc”

** Third definition of mylab, reset upon exit from .include **

mylab? nop
B mylab?
nop 5

** Fourth definition of mylab in macro, macros use different **
** namespace to avoid conflicts **

mymac .macro
mylab? nop
B mylab?
nop 5
.endm

** Macro invocation *x

mymac

** Reference to third definition of mylab. Definition is not **
** reset by macro invocation. b

B mylab?
nop 5

** Changing section, allowing fifth definition of mylab **

.sect "Sect_One”
nop
mylab? .word O
nop
nop
B mylab?
nop 5

** The .newblock directive allows sixth definition of mylab **

.newblock
mylab? .word O

nop

nop

B mylab?

nop 5

3-18

Symbols

3.8.3 Symbolic Constants

Symbols can be set to constant values. By using constants, you can equate
meaningful names with constant values. The .setand .struct/.tag/.endstruct di-
rectives enable you to set constants to symbolic names. Symbolic constants
cannot be redefined. The following example shows how these directives can
be used:

K .set 1024 ; constant definitions
maxbuf .set 2*K

item .struct ; item structure definition
value .int ; value offset =0

delta .int ; delta offset = 4

i_len .endstruct ;itemsize =8

array .tag item
.bss array, i_len*K ; declare an array of K "items”
text
LDW *+Bl4(array.delta + 2*i_len),Al
; access array [2].delta

The assembler also has several predefined symbolic constants; these are
discussed in section 3.8.5.

3.8.4 Defining Symbolic Constants (—d Option)

The —d option equates a constant value with a symbol. The symbol can then
be used in place of a value in assembly source. The format of the —d option
is as follows:

asm6éx —d name=[value]

The nameis the name of the symbol you want to define. The valueis the value
you want to assign to the symbol. If the value is omitted, the symbol is setto 1.

Once you have defined the name with the —d option, the symbol can be used
in place of a constant value, a well-defined expression, or an otherwise unde-
fined symbol used with assembly directives and instructions. For example, on
the command line you enter:

asm6x —dSYM1=1 —-dSYM2=2 —-dSYM3=3 —dSYM4=4 value.asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can
use them in source code. Example 3—3 shows how the value.asm file uses
these symbols without defining them explicitly.

Assembler Description 3-19

Symbols

Example 3—3. Using Symbolic Constants Defined on Command Line

If 4: .if
.byte
.else
.byte
.endif

IF_5: .if
.byte
.else
.byte
.endif

IF_6: .if
.byte
.else
.byte
.endif

IF_7: .if
.elseif
.byte
.endif

SYM4 = SYM2 * SYM2
SYM4 ; Equal values

SYM2 * SYM2 ; Unequal values

SYM1<=10
10 ; Less than / equal

SYM1 ; Greater than

SYM3 * SYM2 |= SYM4 + SYM2
SYM3 * SYM2 ; Unequal value
SYM4 + SYM4 ; Equal values
SYM1 = SYM2

SYM2 + SYM3 =5
SYM2 + SYM3

byte SYM1

Within assembler source, you can test the symbol defined with the —d option

with the following directives:

Type of Test

Directive Usage

Existence
Nonexistence
Equal to value

Not equal to value

.if $isdefed(” name”)

.if name = value

.if name = value

The argument to the $isdefed built-in function must be enclosed in quotes. The
guotes cause the argument to be interpreted literally rather than as a substitu-

tion symbol.

3-20

if $isdefed(” name”) = 0

3.8.5 Predefined Symbolic Constants

Symbols

The assembler has several predefined symbols, including the following types:

[$, the dollar-sign character, represents the current value of the section
program counter (SPC). $ is a relocatable symbol.

[Register symbols , including AO-A15 and BO-B15.

(1 CPU control registers , including the following:

Register

Description

ACR

ADR

AMR

ARP

CSR

ICR

IER

IFR

NRP

IN ('C67xx only)
IRP

ISR

ISTP

OUT ('C67xx only)
PCE1
PDATA_O
STRM_HOLD

TCR

Analysis control register
Analysis data register
Addressing mode register
Analysis return register

Control status register

Interrupt clear register

Interrupt enable register
Interrupt flag register
Nonmaskable interrupt return pointer
General-purpose input register
Interrupt return pointer

Interrupt set register

Interrupt service table pointer
General-purpose output register
Program counter

Program data out

Stream hold register

Test control register

Assembler Description 3-21

Symbols

[Processor symbols , including the following items:

Symbol name Description

.TMS320C6X Always setto 1
.TMS320C6200 Set to 1 for '6200, otherwise 0
.TMS320C6700 Set to 1 for '6700, otherwise 0

.LITTLE_ENDIAN Setto 1 if little-endian mode is selected (the —e assembler
option is not used); otherwise 0.

.BIG_ENDIAN Set to 1 if big-endian mode is selected (the —e assembler
option is used); otherwise 0.

Control registers can be entered as all upper-case or all lower-case char-
acters; for example, CSR can also be entered as csr.

3.8.6 Substitution Symbols

Symbols can be assigned a string value (variable). This enables you to alias
character strings by equating them to symbolic names. Symbols that repre-
sent character strings are called substitution symbols. When the assembler
encounters a substitution symbol, its string value is substituted for the symbol
name. Unlike symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program;

for example:
.global _table
.asg "Bl14’, PAGEPTR
.asg "™+B15(4)", LOCAL1
.asg "+B15(8)", LOCAL2
LDW *+ PAGEPTR table),A0
NOP 4
STW A0, LOCAL1

3-22

Symbols

When you are using macros, substitution symbols are important because
macro parameters are actually substitution symbols that are assigned a macro
argument. The following code shows how substitution symbols are used in
macros:

MAC .macro srcl, src2, dst ; Multiply/Accumulate macro
MPY srcl, src2, src2
NOP
ADD src2, dst, dst
.endm

* MAC macro invocation
MAC AO0,A1,A2

For more information about macros, see Chapter 5, Macro Language.

Assembler Description 3-23

Expressions

3.9 Expressions

3-24

An expression is a constant, a symbol, or a series of constants and symbols
separated by arithmetic operators. The 32-bit ranges of valid expression val-
ues are —2147 483 648 to 2147 483 647 for signed values, and 0 to
4 294 967 295 for unsigned values. Three main factors influence the order of

expression evaluation:

Parentheses

Precedence groups

Left-to-right evaluation

Expressions enclosed in parentheses are always
evaluated first.

8/(4/2)=4,but8/4/2=1

You cannotsubstitute braces ({}) or brackets ([])
for parentheses.

Operators, listed in Table 3—1, are divided into nine
precedence groups. When parentheses do not
determine the order of expression evaluation, the
highest precedence operation is evaluated first.

8+4/2=10(4/2is evaluated first)

When parentheses and precedence groups do not
determine the order of expression evaluation, the
expressions are evaluated from left to right, except
for Group 1, which is evaluated from right to left.

8/4*2=4,but8/(4*2) =1

3.9.1 Operators

Expressions

Table 3-1 lists the operators that can be used in expressions, according to

precedence group.

Table 3—1. Operators Used in Expressions (Precedence)

Group Operator Description
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 = Equal to
1= Not equal to
7 & Bitwise AND
8 n Bitwise exclusive OR (XOR)
9 | Bitwise OR

Note: Group 1 operators are evaluated right to left. All other operators are evaluated left to right.

3.9.2 Expression Overflow and Underflow

The assembler checks for overflow and underflow conditions when arithmetic
operations are performed at assembly time. Itissues a warning (the message
Value Truncated) whenever an overflow or underflow occurs. The assembler
does not check for overflow or underflow in multiplication.

Assembler Description 3-25

Expressions

3.9.3 Well-Defined Expressions

Some assembler directives require well-defined expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants
that are defined before they are encountered in the expression. The evaluation
of a well-defined expression must be absolute.

This is an example of a well-defined expression:

1000h+X

where X was previously defined as an absolute symbol.

3.9.4 Conditional Expressions

The assembler supports relational operators that can be used in any expres-
sion; they are especially useful for conditional assembly. Relational operators
include the following:

= Equal to = Not equal to
< Less than <= Lessthan or equal to
> Greater than > = Greater than or equal to

Conditional expressions evaluate to 1 if true and O if false and may be used
only on operands of equivalent types; for example, absolute value compared
to absolute value, but not absolute value compared to relocatable value.

3.9.5 Relocatable Symbols and Legal Expressions

3-26

All legal expressions can be reduced to one of two forms:
relocatable symbol + absolute symbol

or

absolute value

Unary operators can be applied only to absolute values; they cannot be
applied to relocatable symbols. Expressions that cannot be reduced to contain
only one relocatable symbol are illegal.

Table 3—2 summarizes valid operations on absolute, relocatable, and external
symbols. An expression cannot contain multiplication or division by a relocat-
able or external symbol. An expression cannot contain unresolved symbols
that are relocatable with respect to other sections.

Symbols that have been defined as global with the .global directive can also
be used in expressions; in Table 3—-2, these symbols are referred to as exter-
nal.

Expressions

Table 3—2. Expressions With Absolute and Relocatable Symbols

IfAis... and IfBis... ,then A+Bis... and A-Bis...
Absolute Absolute Absolute Absolute
Absolute Relocatable Relocatable lllegal
Absolute External External lllegal
Relocatable Absolute Relocatable Relocatable
Relocatable Relocatable lllegal Absolutet
Relocatable External lllegal lllegal
External Absolute External External
External Relocatable lllegal lllegal
External External lllegal lllegal

T A and B must be in the same section; otherwise, this is illegal.

Following are examples of expressions that use relocatable and absolute sym-
bols. These examples use four symbols that are defined in the same section:

.global extern_1 ; Defined in an external module

intern_1: .word "D’ : Relocatable, defined in
;current module

LAB1: .set2 :LAB1 =2

intern_2 : Relocatable, defined in
;current module

intern_3 : Relocatable, defined in

;current module
O Examplel

The statements in this example use an absolute symbol, LAB1, which is
defined above to have a value of 2. The first statement loads the value 51
into register Al. The second statement puts the value 27 into register Al.
MVK LAB1 + ((4+3)*7),Al ;Al=51

;24 (M) 7)

12+ (49) =51

MVK LAB1 + 4 + (3*7), Al ;Al=27
;2+4+(21) =27
1 Example 2

The first statement in the following example is valid; the statements that
follow it are invalid.

MVK (extern_1 - 10), Al ; Legal

MVK (10-extern_1), A1 ; Can't negate reloc. symbol
MVK (-(intern_1)), Al ; Can't negate reloc. symbol
MVK' (extern_1/10), Al ; I not an additive operator

MVK (intern_1 + extern_1), Al ; Multiple relocatables

Assembler Description 3-27

Expressions

3-28

(0] Example 3

The first statement below is legal; although intern_1 and intern_2 are
relocatable, their difference is absolute because they are in the same
section. Subtracting one relocatable symbol from another reduces the
expression to relocatable symbol + absolute value. The second statement
is illegal because the sum of two relocatable symbols is not an absolute
value.

MVK (intern_1 —intern_2 + extern_3), A1 ; Legal
MVK (intern_1 + intern_2 + extern_3), A1 ; lllegal
Example 4

Arelocatable symbol’s placementin the expression isimportant to expres-
sion evaluation. Although the statement below is similar to the first state-
ment in the previous example, it is illegal because of left-to-right operator
precedence; the assembler attempts to add intern_1 to extern_3.

MVK (intern_1 + extern_3 —intern_2), A1 ; lllegal

Source Listings

3.10 Source Listings

A source listing shows source statements and the object code they produce.
To obtain a listing file, invoke the assembler with the —I (lowercase L) option
(see page 3-5).

Two banner lines, a blank line, and a title line are at the top of each source list-
ing page. Any title supplied by the title directive is printed on the title line. A
page number is printed to the right of the title. If you do not use the .title direc-
tive, the name of the source file is printed. The assembler inserts a blank line
below the title line.

Each line in the source file produces at least one line in the listing file. This line
shows a source statement number, an SPC value, the object code assembled,
and the source statement. Example 3—4 shows these in an actual listing file.

Field 1: Source Statement Number
Line number

The source statement number is a decimal number. The assembler
numbers source lines as it encounters them in the source file; some
statements increment the line counter but are not listed. (For example,
title statements and statements following a .nolist are not listed.) The
difference between two consecutive source line numbers indicates
the number of intervening statements in the source file that are not
listed.

Include file letter

Aletter preceding the line number indicates the line is assembled from
the include file designated by the letter.

Nesting level number

A number preceding the line number indicates the nesting level of
macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections
(.text, .data, .bss, and named sections) maintain separate SPCs.
Some directives do not affect the SPC and leave this field blank.

Assembler Description 3-29

Source Listings

3-30

Field 3:

Field 4:

Object Code

This field contains the hexadecimal representation of the object code.
All machine instructions and directives use this field to list object code.
This field also indicates the relocation type associated with an
operand for this line of source code. If more than one operand is relo-
catable, this column indicates the relocation type for the first operand.
The characters that can appear in this column and their associated re-
location types are listed below:

! undefined external reference

.text relocatable
+ .sect relocatable

.data relocatable
- .bss, .usect relocatable

Source Statement Field

This field contains the characters of the source statement as they
were scanned by the assembler. The assembler accepts a maximum
line length of 200 characters. Spacing in this field is determined by the
spacing in the source statement.

Example 3-4 shows an assembler listing with each of the four fields identified.

Source Listings

Example 3—4. Assembler Listing

Include file
letter Nesting level Line number
r’1umber
1 * *kk *k%k *k%k *k%k *k%k *kkkk *k%k
2 ** Global variables
3 *% *kkk *kkk *kkkkk
4 00000000 .bss varl, 4
5 00000004 .bss var2, 4
6
7
8 ** Include multiply macro
9 * * *k%k *k%k *
10 .copy mpy32.inc

A mpy32 .macro AB

A

A MPYLH.M1 A,B,A ;tmpl=A.lo*B.hi
A Il MPYHL.M2 A,B,B ;tmp2 =A.hi*B.lo
A

A MPYU.M2 AB,B ;tmp3=A.lo*B.lo
A

A ADD.L1 ABA ; A=tmpl + tmp2

A

A SHL.S1 A/16,A;A<<=16

A

A ADD.L1 B,AA ;A=A+tmp3

A .endm

*kk

** _func multiplies 2 global ints

* *kk * * * *

F*kkkk

*kk *kkkkkkkkk *kkkkkkkkk *kkkk

15 00000000 text
16 00000000 _func
17 00000000 0200006C— LDW *+Bl4(varl),A4
18 00000004 0000016E- LDW *+Bl4(var2),BO
19 00000008 00006000 NOP 4
20 0000000c mpy32 A4,BO
1
1 0000000c 02009881 MPYLH.M1 A4,B0,A4 ;tmpl=A.lo*B.hi
1 00000010 00101882 || MPYHL.M2 A4,B0,BO ;tmp2 = A.hi*B.lo
1
1 00000014 00101F82 MPYU.M2 A4,B0,BO ;tmp3 =A.lo*B.lo
1
1 00000018 02009078 ADD.L1 A4,B0,A4 ; A=tmpl + tmp2
1
1 0000001c 02120CA0 SHL.S1 A4,16,Ad4; A<<=16
1
1 00000020 02009078 ADD.L1 BO,A4,A4 ; A=A +tmp3
21 00000024 000C6362 B B3
22 00000028 00008000 NOP 5
23 *end_ func
—— \ﬁ/_gLv_/
Field1 Field 2 Field 3 Field 4

Assembler Description 3-31

Cross-Reference Listings

3.11 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a
cross-reference listing, invoke the assembler with the —x option (see
page 3-5) or use the .option directive with the X operand (see page 4-58).
The assembler appends the cross-reference to the end of the source listing.
Example 3-5 shows the four fields contained in the cross-reference listing.

Example 3-5. An Assembler Cross-Reference Listing

LABEL VALUE DEFN REF

.BIG_ENDIAN 00000000 0

.LITTLE_ENDIAN 00000001 0

.TMS320C6200 00000001 0

.TMS320C6700 00000000 0

.TMS320C6X 00000001 0

_func 00000000 18

varl 00000000~ 4 17

var2 00000004- 5 18

Label column contains each symbol that was defined or referenced

during the assembly.

Value column contains an 8-digit hexadecimal number (which is the
value assigned to the symbol) or a name that describes the
symbol’s attributes. A value may also be preceded by a char-
acter that describes the symbol’s attributes. Table 3-3 lists
these characters and names.

Definition (DEFN) column contains the statement number that defines
the symbol. This column is blank for undefined symbols.

Reference (REF) column lists the line numbers of statements that refer-
ence the symbol. A blankin this columnindicates that the sym-
bol was never used.

Table 3-3. Symbol Attributes

Character or Name Meaning
REF External reference (global symbol)
UNDF Undefined

' Symbol defined in a .text section
” Symbol defined in a .data section
+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

3-32

Chapter 4

Assembler Directives

Assembler directives supply data to the program and control the assembly
process. Assembler directives enable you to do the following:

Assemble code and data into specified sections

Reserve space in memory for uninitialized variables

Control the appearance of listings

Initialize memory

Assemble conditional blocks

Define global variables

Specify libraries from which the assembler can obtain macros
Examine symbolic debugging information

oo oodd

This chapter is divided into two parts: the first part (Sections 4.1 through 4.9)
describes the directives according to function, and the second part (Section
4.10) is an alphabetical reference.

Topic Page
4.1 Directives Summary 4
4.2 Directives That Define Sections , 4-
4.3 Directives That Initialize Constants ~ 4 -

4.4 Directives That Align the Section Program Counter ~4.-1['
4.5 Directives That Format the Output Listing — 4-_‘LE|
4.6 Directives That Reference Other Files: 4-
4.7 Directives That Enable Conditional Assembly — 4 -lD
4.8 Directives That Define Symbols at Assembly Time — 4 -1E|
4.9 Miscellaneous DIreCtivesot 449 |
4.10 Directives RefEreNCevvvvee e 4120

Directives Summary

4.1 Directives Summary
Table 4—1 summarizes the assembler directives.

Besides the assembler directives documented here, the 'C6x software tools
support the following directives:

[The assembler uses several directives for macros. Macro directives are
discussed in Chapter 5, Macro Language; they are not discussed in this
chapter.

(1 The assembly optimizer uses several directives that supply data and con-
trol the optimization process. Assembly optimizer directives are discussed
inthe TMS320C6x Optimizing C Compiler User’s Guide; they are not dis-
cussed in this book.

(1 The Ccompileruses directives for symbolic debugging. Unlike other direc-
tives, symbolic debugging directives are not used in most assembly lan-
guage programs. Appendix B, Symbolic Debugging Directives, discusses
these directives; they are not discussed in this chapter.

Note: Labels and Comments in Not Shown Syntaxes

Any source statement that contains a directive can also contain a label and
a comment. Labels begin in the first column (they are the only elements, ex-
cept comments, that can appear in the first column), and comments must be
preceded by a semicolon or an asterisk if the comment is only element in the
line. To improve readability, labels and comments are not shown as part of
the directive syntax.

Table 4-1. Assembler Directives Summary

(a) Directives that define sections

Mnemonic and Syntax Description Page

.bss symbol, size in bytes [, alignment] Reserves size bytes in the .bss (uninitialized data) 4-24
section

.data Assembles into the .data (initialized data) section 4-30

.sect " section name” Assembles into a named (initialized) section 4-61

text Assembles into the .text (executable code) section 4-71

symbol .usect " section name”, size in bytes Reserves size bytes in a named (uninitialized) section 4-73
[, alignment]

Directives Summary

Table 4-1. Assembler Directives Summary (Continued)

(b) Directives that initialize constants (data and memory)

Mnemonic and Syntax Description Page

.bes size Reserves size bytes in the current section; a label 4-63
points to the end of the reserved space

.byte value; [, ..., valuey] Initializes one or more successive bytes in the current 4-25
section

.char valuey [, ..., value,] Initializes one or more successive bytes in the current 4-25
section

.double value; [, ..., valuey] Initializes one or more 64-bit, IEEE double-precision, 4-31

floating-point constants

field value [, size] Initializes a field of size bits (1-32) with value 4-37
float valuey [, ..., valuep] Initializes one or more 32-bit, IEEE single-precision, 4-40
floating-point constants
half value; [, ..., valuep] Initializes one or more 16-bit integers (halfword) 4-43
int valueyq [, ..., value,] Initializes one or more 32-bit integers 4-46
Jong valueyq [, ..., valueg] Initializes one or more 32-bit integers 4-46
.short valuey [, ..., value,] Initializes one or more 16-bit integers (halfword) 4-43
.space size Reserves size bytes in the current section; a label 4-63

points to the beginning of the reserved space
.string {expr;|" string;"} [, ..., {expr,|” string,”}] Initializes one or more text strings 4-66

.word valuey [, ..., value,] Initializes one or more 32-hit integers 4-46

(c) Directives that align the section program counter (SPC)

Mnemonic and Syntax Description Page

.align [size in bytes] Aligns the SPC on a boundary specified by size in 4-21
bytes, which must be a power of 2; defaults to byte
boundary

Assembler Directives 4-3

Directives Summary

Table 4-1. Assembler Directives Summary (Continued)

(d) Directives that format the output listing

Mnemonic and Syntax Description Page
.drlist Enables listing of all directive lines (default) 4-32
.drnolist Suppresses listing of certain directive lines 4-32
fclist Allows false conditional code block listing (default) 4-36
fenolist Suppresses false conditional code block listing 4-36
length [page length] Sets the page length of the source listing 4-49
list Restarts the source listing 4-50
.mlist Allows macro listings and loop blocks (default) 4-56
.mnolist Suppresses macro listings and loop blocks 4-56
.nolist Stops the source listing 4-50
.option option; [, optiony, . . .] Selects output listing options; available options are A, 4-58
B,D,H,L,MN,O,R, T, W, and X
.page Ejects a page in the source listing 4-60
.sslist Allows expanded substitution symbol listing 4-64
.ssnolist Suppresses expanded substitution symbol listing 4-64
(default)
.tab size Sets tab to size characters 4-70
title ” string” Prints a title in the listing page heading 4-72
.width [page width] Sets the page width of the source listing 4-49

4-4

Directives Summary

Table 4-1. Assembler Directives Summary (Continued)

(e) Directives that reference other files

Mnemonic and Syntax Description Page

.copy ["]filename]["] Includes source statements from another file 4-27

.def symbol; [, ..., symbol,] Identifies one or more symbols that are defined in the 4-41
current module and that can be used in other modules

.global symbol; [, ..., symbol,] Identifies one or more global (external) symbols 4-41

.include ["]filename[’] Includes source statements from another file 4-27

.mlib ["]filename["] Defines macro library 4-54

.ref symboly [, ... , symbol,] Identifies one or more symbols used in the current 4-41
module that are defined in another module

(f) Directives that enable conditional assembly

Mnemonic and Syntax Description Page

.break [well-defined expression] Ends .loop assembly if well-defined expressionis true. 4-52
When using the .loop construct, the .break constructis
optional.

.else Assembles code block if the .if well-defined expression 4-44
is false. When using the .if construct, the .else
construct is optional.

.elseif well-defined expression Assembles code block if the .if well-defined expression 4-44
is false and the .elseif condition is true. When using the
.if construct, the .elseif construct is optional.

.endif Ends .if code block 4-44

.endloop Ends .loop code block 4-52

if well-defined expression Assembles code block if the well-defined expression 4-44
is true

Jloop [well-defined expression] Begins repeatable assembly of a code block; the loop 4-52
count is determined by the well-defined expression.

Assembler Directives 4-5

Directives Summary

Table 4-1. Assembler Directives Summary (Continued)

(9) Directives that define symbols at assembly time

Mnemonic and Syntax Description Page
.asg ["]character string["], Assigns a character string to substitution symbol 4-22
substitution symbol
.endstruct Ends structure definition 4-67
symbol .equ value Equates value with symbol 4-62
.eval well-defined expression, Performs arithmetic on numeric substitution symbol ~ 4-22
substitution symbol
label symbol Defines a load-time relocatable label in a section 4-48
symbol .set value Equates value with symbol 4-62
.struct Begins structure definition 4-67
.tag Assigns structure attributes to a label 4-67
(h) Miscellaneous directives
Mnemonic and Syntax Description Page
.clink [“section name”] Enables conditional linking for the current or specified 4-26
section.
.emsg string Sends user-defined error messages to the output 4-33
device; produces no .obj file
.end Ends program 4-35
.mmsg string Sends user-defined messages to the output device 4-33
.newblock Undefines local labels 4-57

.wmsg string

Sends user-defined warning messages to the output 4-33

device

4-6

Directives That Define Sections

4.2 Directives That Define Sections

These directives associate portions of an assembly language program with
the appropriate sections:

a

a

The .bss directive reserves space in the .bss section for uninitialized vari-
ables.

The .data directive identifies portions of code in the .data section. The
.data section usually contains initialized data.

The .sect directive defines an initialized named section and associates
subsequent code or data with that section. A section defined with .sect can
contain code or data.

The .text directive identifies portions of code in the .text section. The .text
section usually contains executable code.

The .usect directive reserves space in an uninitialized named section.
The .usect directive is similar to the .bss directive, but it allows you to re-
serve space separately from the .bss section.

Chapter 2, Introduction to Common Object File Format, discusses COFF sec-
tions in detail.

Example 4-1 shows how you can use sections directives to associate code
and data with the proper sections. This is an output listing; column 1 shows line
numbers, and column 2 shows the SPC values. (Each section has its own pro-
gram counter, or SPC.) When code is first placed in a section, its SPC equals
0. When you resume assembling into a section after other code is assembled,
the section’s SPC resumes counting as if there had been no intervening code.

The directives in Example 4-1 perform the following tasks:

text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.

.bss reserves 19 bytes.

Xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sec-
tions; they reserve the specified amount of space, and then the assembler re-
sumes assembling code or data into the current section.

Assembler Directives 4-7

Directives That Define Sections

Example 4-1. Sections Directives

1
2 * Start assembling into the .text section *
3 * *
4 00000000 text
5 00000000 00000001 .word 1,2
00000004 00000002
6 00000008 00000003 .word 3,4
0000000c 00000004
7
8 *% *kkkkk *kkkkk *kkk
9 * Start assembling into the .data section *
10
11 00000000 .data
12 00000000 00000009 .word 9, 10
00000004 0000000A
13 00000008 0000000B word 11, 12
0000000c 0000000C
14
15 * Kkkkk ik *
16 * Start assembling into a named, *
17 * initialized section, var_defs *
18 Hhkkkkk Hhkkkkk Hokkkk Hoxk
19 00000000 .sect "var_defs”
20 00000000 00000011 .word 17,18
00000004 00000012
21
22
23 * Resume assembling into the .data section *
24 kK ok o kA
25 00000010 .data
26 00000010 0000000D word 13, 14
00000014 0000000E
27 00000000 .bss sym, 19 ; Reserve space in .bss
28 00000018 0000000F .word 15,16 ; Stillin .data
0000001c 00000010
29
31 * Resume assembling into the .text section *
32 ok ok ok *
33 00000010 text
34 00000010 00000005 .word 5, 6
00000014 00000006
35 00000000 usym .usect "xy”, 20 ; Reserve space in xy
36 00000018 00000007 .word 7,8 ; Stillin .text
0000001c 00000008

Directives That Initialize Constants

4.3 Directives That Initialize Constants
Several directives assemble values for the current section:

1 The.bes and .space directives reserve a specified number of bytes in the
current section. The assembler fills these reserved bytes with 0s.

B When you use a label with .space, it points to the first byte that con-
tains reserved bits.

B Whenyou use a label with .bes, it points to the /ast byte that contains
reserved bits.

Figure 4-1 shows how the .space and .bes directives work for the follow-
ing assembled code:

1

2 00000000 00000100 .word 100h, 200h
00000004 00000200

300000008 Res_1: .space 17

4 0000001c 0000000F .word 15

500000033 Res 2: .bes 20

6 00000034 000000BA .byte OBAh

Res_1 points to the first byte in the space reserved by .space. Res 2
points to the last byte in the space reserved by .bes.

Figure 4-1. The .space and .bes Directives

N TN
\
4— Res_1=08h
17 bytes
reserved
20 bytes
reserved
<4— Res_2=33h
N _—" \\

(1 The .byte and .char directives place one or more 8-bit values into con-
secutive bytes of the current section. These directives are similar to .long
and .word, except that the width of each value is restricted to eight bits.

[The .double directive calculates the double-precision (64-bit) IEEE float-
ing-point representation of one or more floating-point values and stores
them in two consecutive words in the current section. The .double directive
automatically aligns to the double-word boundary.

Assembler Directives 4-9

Directives That Initialize Constants

[0 The .field directive places a single value into a specified number of bits
in the current word. With .field, you can pack multiple fields into a single
word; the assembler does not increment the SPC until a word is filled.

Figure 4—2 shows how fields are packed into a word. Using the following
assembled code, notice that the SPC does not change (the fields are

packed into the same word):

1 00000000 00000003 field 3,4
2 00000000 00000083 field 8,5
3 00000000 00002083 field 16,7

Figure 4-2. The .field Directive

31 8 7 6 5 4

3 2 1 0

0 0 1 1|felasa

N— p—
4 bits

o oo ofoo s ifeuss

31 _ 15 14 13 12 11 10 9

| 0 01000 0[/0 100 0[0 0 1 1lieldis?

[0 The .float directive calculates the single-precision (32-bit) IEEE float-
ing-point representation of a single floating-point value and stores it in a

word in the current section that is aligned to a word boundary.

[The .half and .short directives place one or more 16-bit values into

consecutive 16-bit fields (halfwords) in the current section.

[The.int,.long, and .word directives place one or more 32-bit values into

consecutive 32-bit fields (words) in the current section.

[0 The .string directive places 8-hit characters from one or more character
strings into the current section. This directive is similar to .byte, placing an

8-bit character in each consecutive byte of the current section.

Note: Directives That Initialize Constants When Used in a

.struct/.endstruct Sequence

The .byte, .char, .int, .long, .word, .double, .half, .short, .string, .float, and
field directives do not initialize memory when they are part of a .struct/
.endstruct sequence; rather, they define a member’s size. For more informa-

tion about the .struct/.endstruct directives, see page 4-67.

4-10

Directives That Initialize Constants

Figure 4-3 compares the .byte, .half, .word, and .string directives. Using the
following assembled code:

1 00000000 OO0000AB .byte OABh
2 00000002 OO00CDEF .half OCDEFh
3 00000004 89ABCDEF .word 089ABCDEFh
4 00000008 00000068 .string "help”
00000009 00000065
0000000a 0000006C
0000000b 00000070

Figure 4-3. Initialization Directives

Word Contents Code
31 0
1 0 0 0 0 0 0 A B .byte 0ABh
T loge
2 0 0 0 0 C D E F .half OCDEFh

2 bytes (half word)

.word 089ABCDEFh

3 8 9 A B C D E F

whole word

4 70 6C 65 68 string "help”

Assembler Directives 4-11

Directive That Aligns the Section Program Counter

4.4 Directive That Aligns the Section Program Counter

The .align directive aligns the SPC at the next byte boundary. This directive
is useful with the .field directive when you do not want to pack two adjacent
fields in the same byte. Figure 4—4 demonstrates the .align directive. Using the
following assembled code:

1

2 00000000 0O0AABBCC field OAABBCCh,24
3 .align

4 00000000 OBAABBCC field 0Bh,5

5 00000004 000000DE field ODEh,10

Figure 4-4. The .align Directive

Word Code
31 23 0
o | 10101010101110111100110 0| -Med0AABBCCH 24
24-bit field
31 23 0

0 [oooooo0oo10101010101210211211002100]

31 4 0
1 | 0101 1| field 0Bh, 5

—
5-bit field
31 15 4 0
| 0011011110/0102 | fieldODEN 10

10-bit field

4-12

Directives That Format the Output Listing

4.5 Directives That Format the Output Listing

These directives format the listing file:

[The .drlist directive causes printing of the directive lines to the listing; the
.drnolist directive turns it off for certain directives. You can use the
.drnolist directive to suppress the printing of the following directives:

.asg .eval Jength .mnolist .var
.break fclist .mlist .sslist width
.emsg fcnolist .mmsg .ssnolist .wmsg

You can use the .drlist directive to turn the listing on again.

[Thesource code listing includes false conditional blocks that do not gener-
ate code. The .fclist and .fcnolist directives turn this listing on and off. You
can use the .fclist directive to list false conditional blocks exactly as they
appear in the source code. You can use the .fcnolist directive to list only
the conditional blocks that are actually assembled.

[The .length directive controls the page length of the listing file. You can
use this directive to adjust listings for various output devices.

[The .list and .nolist directives turn the output listing on and off. You can
use the .nolist directive to prevent the assembler from printing selected
source statements in the listing file. Use the .list directive to turn the listing
on again.

[The source code listing includes macro expansions and loop blocks. The
.mlist and .mnolist directives turn this listing on and off. You can use the
.mlist directive to print all macro expansions and loop blocks to the listing,
and the .mnolist directive to suppress this listing.

[The .option directive controls certain features in the listing file. This direc-
tive has the following operands:

A turns on listing of all directives and data, and subsequent expan-
sions, macros, and blocks.

limits the listing of .byte and .char directives to one line.

turns off the listing of certain directives (same effect as .drnolist).
limits the listing of .half and .short directives to one line.

limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

U Oz r T OWwW

resets the B, H, L, M, T, and W directives (turns off the limits of
B, H, L, M, T, and W).

Assembler Directives 4-13

Directives That Format the Output Listing

4-14

T limits the listing of .string directives to one line.
limits the listing of .word and .int directives to one line.

X produces a cross-reference listing of symbols. You can also
obtain a cross-reference listing by invoking the assembler with
the —x option (see page 3-5).

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The
.sslist and .ssnolist directives turn this listing on and off. You can use the
.sslist directive to print all substitution symbol expansions to the listing,
and the .ssnolist directive to suppress this listing. These directives are
useful for debugging the expansion of substitution symbols.

The .tab directive defines tab size.

The .title directive supplies a title that the assembler prints at the top of
each page.

The .width directive controls the page width of the listing file. You can use
this directive to adjust listings for various output devices.

Directives That Reference Other Files

4.6 Directives That Reference Other Files

These directives supply information for or about other files that can be used
in the assembly of the current file:

a

The .copy and .include directives tell the assembler to begin reading
source statements from another file. When the assembler finishes reading
the source statements in the copy/include file, it resumes reading source
statements from the currentfile. The statements read from a copied file are
printed in the listing file; the statements read from an included file are not
printed in the listing file.

The .def directive identifies a symbol that is defined in the current module
and that can be used in another module. The assembler includes the sym-
bol in the symbol table.

The .global directive declares a symbol external so that it is available to
other modules at link time. (For more information about global symbols,
see section 2.7.1, External Symbols, on page 2-18). The .global directive
does double duty, acting as a .def for defined symbols and as a .ref for
undefined symbols. The linker resolves an undefined global symbol refer-
ence only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive
library that contains macro definitions. When the assembler encounters
a macro that is not defined in the current module, it searches for it in the
macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but
is defined in another module. The assembler marks the symbol as an
undefined external symbol and enters it in the object symbol table so the
linker can resolve its definition. The .ref directive forces the linker to
resolve a symbol reference.

Assembler Directives 4-15

Directives That Enable Conditional Assembly

4.7 Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to
assemble certain sections of code according to a true or false evaluation of an
expression. Two sets of directives allow you to assemble conditional blocks of
code:

(O The .if/.elseif/.else/.endif directives tell the assembler to conditionally
assemble a block of code according to the evaluation of an expression.

.if well-defined expression marks the beginning of a conditional
block and assembles code if the .if
well-defined expression is true.

[.elseif well-defined expression] marks a block of code to be as-
sembled if the .if well-defined expres-
sion is false and the .elseif condition

is true.

[.else] marks a block of code to be as-
sembled if the .if well-defined expres-
sionis false.

.endif marks the end of a conditional block

and terminates the block.

(1 The .loop/.break/.endloop directives tell the assembler to repeatedly
assemble a block of code according to the evaluation of an expression.

loop [well-defined expression) marks the beginning of a repeatable
block of code. The optional expres-
sion evaluates to the loop count.

[.break [well-defined expression]] tells the assembler to assemble re-
peatedly when the .break well-de-
fined expression is false and to go to
the code immediately after .endloop
when the expression is true or
omitted.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for condi-
tional expressions. For more information about relational operators, see sec-
tion 3.9.4, Conditional Expressions, on page 3-26.

4-16

Directives That Define Symbols at Assembly Time

4.8 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to con-
stant values or strings.

[The .asg directive assigns a character string to a substitution symbol. The
value is stored in the substitution symbol table. When the assembler
encounters a substitution symbol, it replaces the symbol with its character
string value. Substitution symbols can be redefined.

.asg "10, 20, 30, 40", coefficients
.byte coefficients

[The .eval directive evaluates a well-defined expression, translates the
results into a character string, and assigns the character string to a substi-
tution symbol. This directive is most useful for manipulating counters:

.asg 1,x

loop

.byte x*10h
.break X=4

.eval x+1, X
.endloop

[The .label directive defines a special symbol that refers to the loadtime
address within the current section. This is useful when a section loads at
one address but runs at a different address. For example, you may want
to load a block of performance-critical code into slower off-chip memory
to save space and move the code to high-speed on-chip memory to run.
See page 4-48 for an example using a loadtime address label.

Assembler Directives 4-17

Directives That Define Symbols at Assembly Time

4-18

[0 The.set and.equ directives set a constant value to a symbol. The symbol

is stored in the symbol table and cannot be redefined; for example:

bval .set 1000h

long bval, bval*2, bval+12

MVK bval, A2
The .set and .equ directives produce no object code. The two directives
are identical and can be used interchangeably.

The .struct/.endstruct directives set up C-like structure definitions, and
the .tag directive assigns the C-like structure characteristics to a label.

The .struct/.endstruct directives allow you to organize your information
into structures so that similar elements can be grouped together. Element
offset calculation is left up to the assembler. The .struct/.endstruct direc-
tives do not allocate memory. They simply create a symbolic template that
can be used repeatedly.

The .tag directive assigns a label to a structure. This simplifies the symbol-
ic representation and also provides the ability to define structures that con-
tain other structures. The .tag directive does not allocate memory, and the
structure tag (stag) must be defined before it is used.

COORDT .struct ; structure tag definition

X .byte

Y .byte

T_LEN .endstruct

COORD .tag COORDT ; declare COORD (coordinate)
.bss COORD, T_LEN ; actual memory allocation

LDB *B14(COORD.Y), A2 ; move member Y of structure
; COORD into register A2.

Miscellaneous Directives

4.9 Miscellaneous Directives

These directives enable miscellaneous functions or features:

a

The .clink directive sets the STYP_CLINK flag in the type field for the
named section. The .clink directive can be applied to initialized or uninitial-
ized sections. The STYP_CLINK flag enables conditional linking by telling
the linker to leave the section out of the final COFF output of the linker if
there are no references found to any symbol in the section.

The .end directive terminates assembly. If you use the .end directive, it
should be the last source statement of a program. This directive has the
same effect as an end-of-file character.

The .newblock directive resets local labels. Local labels are symbols of
the form $n, where n is a decimal digit, or of the form NAME?, where you
specify NAME. They are defined when they appear in the label field. Local
labels are temporary labels that can be used as operands for jump instruc-
tions. The .newblock directive limits the scope of local labels by resetting
them after they are used. For more information, see section 3.8.2, Local
Labels, on page 3-16.

These three directives enable you to define your own error and warning
messages:

a

The .emsg directive sends error messages to the standard output device.
The .emsg directive generates errors in the same manner as the assem-
bler, incrementing the error count and preventing the assembler from pro-
ducing an obiject file.

The .mmsg directive sends assembly-time messages to the standard out-
put device. The .mmsg directive functions in the same manner as the
.emsg and .wmsg directives but does not set the error count or the warning
count. It does not affect the creation of the object file.

The .wmsg directive sends warning messages to the standard output
device. The .wmsg directive functions in the same manner as the .emsg
directive but increments the warning count rather than the error count. It
does not affect the creation of the object file.

For more information about using the error and warning directives in macros,
see Section 5.7, Producing Messages in Macros, on page 5-17.

Assembler Directives 4-19

Directives Reference

4.10 Directives Reference

4-20

The remainder of this chapter is a reference. Generally, the directives are
organized alphabetically, one directive per page; however, related directives
(such as .if/.else/.endif) are presented together on one page. Following is an

alphabetical table of contents for the directives reference:

.endloop ...l
.endstruct

B
NI
N[N

N
@
W

£
@
o

+
I
N

B
o
X

-P
o)
~

£
o)
N

4?
N
N

o
@
o

o
@w
o

.[I>
w
~

1N
N
=

+
i
W

4-44
4-27

Directive Page
nt oo A-46|
label 4-48)
length 4-49]
dist oo 4-50)
long................ ... 1-46
loop.....cooii 1-52
miib...................... 1-54)
mlist ... A4-56
MMSY .o 1-33]
mnolist 1-56]
.newblock A-57]
nolist, 4-50
option ... 4-58
page ... 4-60
ref o A-41)
SECL. .o
Set. . 4-62
shortl 1-43
SPACE ...\t 1-63)]
sslistooiiii 1-64)
SSNOlist 1-64]
String Lo A4-66|
SUUCE oo 4-67]
@b L 4-70]
7T 4-67]
ABXE L 471
ditle ..o A-72
usecti..... -73
width 1-49
WMS «vi i 1-33
word ... A-406]

Syntax

Description

Example

Align SPC on the Next Word Boundary .align

.align [size in bytes]

The .align directive aligns the section program counter (SPC) on the next
boundary, depending on the size in bytes parameter. The size can be any
power of 2, although only certain values are useful for alignment. An operand

of 1 aligns the SPC on the

next byte boundary, and this is the default if no size

in bytes is given. The assembler assembles words containing null values (0)
up to the next size in bytes boundary:

Operand of 1
2
4
8

128

aligns SPC to byte boundary

aligns SPC to halfword boundary
aligns SPC to word boundary

aligns SPC to doubleword boundary
aligns SPC to page boundary

Using the .align directive has two effects:

[The assembler aligns
section.

the SPC on an x-word boundary within the current

[The assembler sets a flag that forces the linker to align the section so that
individual alignments remain intact when a section is loaded into memory.

This example shows several types of alignment, including .align 2, .align 8, and

a default .align.

1 00000000 00000004

2

3 00000002 00000045

00000003 00000072
00000004 00000072
00000005 0000006F
00000006 00000072
00000007 00000063
00000008 0000006E
00000009 00000074
4

500000008 0003746E field 3,3
6 00000008 002B746E field 5,4

7

8 0000000c 00000003

9

10 00000010 00000005 field 5,4

11

.byte 4
align 2
.string "Errorcnt”
.align
align 2
field 3,3
.align 8
.align

12 00000011 00000004 Jbyte 4

Assembler Directives 4-21

.asg/.eval

Syntax

Description

4-22

Assign a Substitution Symbol

.asg [”]character string["], substitution symbol
.eval well-defined expression, substitution symbol

The .asg directive assigns character strings to substitution symbols. Substitu-
tion symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns
a constant value (which cannot be redefined) to a symbol, .asg assigns a char-
acter string (which can be redefined) to a substitution symbol.

[The assembler assigns the character string to the substitution symbol.
The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading
and trailing blanks. In either case, a character string is read and assigned
to the substitution symbol.

(1 The substitution symbol must be a valid symbol name. The substitution
symbol is up to 128 characters long and must begin with a letter.
Remaining characters of the symbol can be a combination of alphanu-
meric characters, the underscore (_), and the dollar sign ($).

The .eval directive performs arithmetic on substitution symbols, which are
stored in the substitution symbol table. This directive evaluates the well-
defined expressionand assigns the string value of the result to the substitution
symbol. The .eval directive is especially useful as a counter in .loop/.endloop
blocks.

[The well-defined expression is an alphanumeric expression in which all
symbols have been previously defined in the current source module, so
that the result is an absolute.

(1 The substitution symbol must be a valid symbol name. The substitution
symbol is up to 128 characters long and must begin with a letter. Remain-
ing characters of the symbol can be a combination of alphanumeric char-
acters, the underscore (_), and the dollar sign ($).

Assign a Substitution Symbol .asg/.eval

Example This example shows how .asg and .eval can be used.
1 .sslist ; show expanded substitution symbols
2
3 .asg *+B14(100), GLOB100
4 .asg *+B15(4), ARGO
5
6 00000000 003B22E4 LDW GLOB100,A0
LDW *+B14(100),A0
7 00000004 O0OBC22E4 LDW ARGO,Al
LDW *+B15(4),Al

8 00000008 00006000 NOP 4
9 0000000c 010401E0 ADD A0,A1,A2

10
11 .asg 0,x
12 Joop 5
13 .word 100*x
14 .eval x+1,x
15 .endloop
1 00000010 00000000 .word 100*x
.word 100*0
1 .eval x+1,x
.eval 0+1,x
1 00000014 00000064 .word 100*x
.word 100*1
1 .eval x+1,x
.eval 1+1,x
1 00000018 000000C8 .word 100*x
.word 100*2
1 .eval x+1,x
.eval 2+1,x
1 0000001c 0000012C .word 100*x
.word 100*3
1 .eval x+1,x
.eval 3+1,x
1 00000020 00000190 .word 100*x
.word 100*4
1 .eval x+1,x
.eval 4+1,x

Assembler Directives 4-23

.bss Reserve Space in the .bss Section

Syntax .bss symbol, size in bytes [, alignment]

Description The .bss directive reserves space for variables in the .bss section. This direc-
tive is usually used to allocate space in RAM.

[0 The symbolis arequired parameter. It defines a label that points to the first
location reserved by the directive. The symbol name must correspond to
the variable that you are reserving space for.

[The size in bytes is a required parameter; it must be an absolute expres-
sion. The assembler allocates size bytes in the .bss section.

(1 The alignmentis an optional parameter that ensures that the space allo-
cated to the symbol occurs on the specified boundary. This boundary indi-
cates the size of the slot in bytes and must be set to a power of 2. If the
SPC is aligned to the specified boundary, it is not incremented.

For more information about COFF sections, see Chapter 2, Introduction to
Common Object File Format.

Example Inthis example, the .bss directive is used to allocate space for a variable, array.
The symbol array points to 100 bytes of uninitialized space (at .bss SPC = 0).
Symbols declared with the .bss directive can be referenced in the same
manner as other symbols and can also be declared global.

* * * * * Fkk

** Start assembling into .text section. **
4 00000000 text

5 00000000 008001A0 MV A0Al

6

7 * * * *

8 ** Allocate 100 bytes in .bss. **

9 *k*k * * * * *

10 00000000 .bss array,100

WN -

12 ok kol Hkkkkk *
13 ** Sill in .text *x

14 ok Hkkdx Hkkkx
15 00000004 010401A0 MV AlA2

16
17
18 ** Declare external .bss symbol **
19
20 .global array

4-24

Syntax

Description

Example

Initialize Byte .bytel.char

.byte value; |, ..., valuep]
.char value; [, ..., valuey]

The .byte and .char directives place one or more values into consecutive
bytes of the current section. A value can be one of the following:

[An expression that the assembler evaluates and treats as an 8-bit signed
number

[A character string enclosed in double quotes. Each character in a string
represents a separate value, and values are stored in consecutive bytes.
The entire string must be enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The
second byte occupies bits eight through 15 while the third byte occupies bits
16 through 23. The assembler truncates values greater than eight bits. You
can use up to 100 value parameters, but the total line length cannot exceed
200 characters.

If you use a label, it points to the location of the first byte that is initialized.

When you use .byte or .char in a .struct/.endstruct sequence, .byte and .char
define a member’s size; they do not initialize memory. For more information
about .struct/.endstruct, see page 4-67.

In this example, 8-bit values (10, —1, abc, and a) are placed into consecutive
bytes in memory with .byte and .char. The label strx has the value Oh, which
is the location of the first initialized byte. The label stry has the value 6h, which
is the first byte initialized by the .char directive.

1 00000000 O000000A strx .byte 10,—1,"abc”’a’
00000001 OO0000FF
00000002 00000061
00000003 00000062
00000004 00000063
00000005 00000061
2 00000006 00000008 stry .char 8,-3,"def",’b’
00000007 000000FD
00000008 00000064
00000009 00000065
0000000a 00000066
0000000b 00000062

Assembler Directives 4-25

.clink Conditionally Leave Section Out of COFF Output

Syntax .clink ["section name”]

Description The .clink directive sets up conditional linking for a section by setting the
STYP_CLINK flag in the type field for section name. The .clink directive can
be applied to initialized or uninitialized sections.

The section name identifies the section. If .clink is used without a section
name, it applies to the current initialized section. If .clink is applied to an unini-
tialized section, the section name is required. The section name is significant
to 200 characters and must be enclosed in double quotes. A section name can
contain a subsection name in the form section name:subsection name.

The .clink directive tells the linker to leave the section out of the final COFF
output of the linker if there are no references found in a linked section to any
symbol defined in the specified section. The —a linker option produces the final
COFF output in the form of an absolute, executable output module.

A section in which the entry point of a C program is defined cannot be marked
as a conditionally linked section.

Example In this example, the Vars and Counts sections are set for conditional linking.
1 00000000 .sect "Vars”
2 .clink
3 ; Vars section is conditionally linked
4

5 00000000 0000001A X: .word 01Ah
6 00000004 0000001A Y: .word 01Ah
7 00000008 0000001A Z: .word 01Ah

8 00000000 .sect "Counts”

9 .clink

10 ; Counts section is conditionally linked
11

12 00000000 0000001A XCount: .word 01Ah
13 00000004 0000001A YCount: .word 01Ah
14 00000008 0000001A ZCount: .word 01Ah

15 00000000 text
16 ; By default, .text is unconditionally linked
17

18 00000000 00B802C4 LDH *B14,Al

19 00000004 00000028+ MVK X,A0

20 00000008 00000068+ MVKH X,A0

21 ; These references to symbol X cause the Vars
22 ; section to be linked into the COFF output

23 0000000c 00040AF8 CMPLT AO0,A1,A0

4-26

Syntax

Description

Copy Source File .copy/.include

.copy ["]filename]|”]

.include ["]filename["]

The .copy and .include directives tell the assembler to read source state-
ments from a different file. The statements that are assembled from a copy file
are printed in the assembly listing. The statements that are assembled from
an included file are not printed in the assembly listing, regardless of the
number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:
1) Stops assembling statements in the current source file
2) Assembles the statements in the copied/included file

3) Resumes assembling statements in the main source file, starting with the
statement that follows the .copy or .include directive

The filename is a required parameter that names a source file. It can be
enclosed in double quotes and must follow operating system conventions. You
can specify a full pathname (for example, /320tools/filel.asm). If you do not
specify a full pathname, the assembler searches for the file in:

1) The directory that contains the current source file
2) Any directories named with the —i assembler option
3) Any directories specified by the A_DIR environment variable

For more information about the —i option and A_DIR, see Section 3.4, Naming
Alternate Directories for Assembler Input, on page 3-6.

The .copy and .include directives can be nested within a file being copied or
included. The assembler limits nesting to 32 levels; the host operating system
may set additional restrictions. The assembler precedes the line numbers of
copied files with a letter code to identify the level of copying. An Aindicates the
first copied file, B indicates a second copied file, etc.

Assembler Directives 4-27

.copy/.include

Example 1

Copy Source File

In this example, the .copy directive is used to read and assemble source state-
ments from other files; then, the assembler resumes assembling into the
current file.

The original file, copy.asm, contains a .copy statement copying the file
byte.asm. When copy.asm assembles, the assembler copies byte.asminto its
place in the listing (note listing below). The copy file byte.asm contains a .copy
statement for a second file, word.asm.

When itencounters the .copy statement for word.asm, the assembler switches
to word.asm to continue copying and assembling. Then the assembler returns
to its place in byte.asm to continue copying and assembling. After completing
assembly of byte.asm, the assembler returns to copy.asm to assemble its
remaining statement.

copy.asm
(source file)

word.asm
(second copy file)

byte.asm
(first copy file)

.Space 29

.copy "byte.asm”

**Back in original file

** |n word.asm
.word OABCDh, 56q

** |n byte.asm
.byte 32,1+ 'A’
.copy "word.asm”
** Back in byte.asm

.string "done” .byte 67h + 3q
Listing file:
1 00000000 .space 29
2 .copy "byte.asm”
A 1 ** |n byte.asm
A 20000001d 00000020 .byte 32,1+ A’
0000001e 00000042
A 3 .copy "word.asm”
B 1 ** |n word.asm
B 200000020 0000ABCD .word OABCDh, 56q
00000024 0000002E
A 4 ** Back in byte.asm
A 500000028 0000006A .byte 67h + 3q
3
4 ** Back in original file
5 00000029 00000064 .string "done”
0000002a 0000006F
0000002b 0000006E
0000002c 00000065

4-28

Copy Source File .copy/.include

In this example, the .include directive is used to read and assemble source

Example 2
statements from other files; then, the assembler resumes assembling into the
current file. The mechanism is similar to the .copy directive, except that state-
ments are not printed in the listing file.
copy.asm byte2.asm word2.asm
(source file) (firstinclude file) (second include file)
.space 29 ** |n byte2.asm ** |In word2.asm
.include "byte2.asm” .byte 32,1+ A’ .word OABCDh, 56q

**Back in original file
.string "done”

.include "word2.asm”
** Back in byte.asm
.byte 67h + 3q

Listing file:

1 00000000 .Space 29
2 .include "byte2.asm”

3

4 ** Back in original file

5 00000029 00000064 .string "done”
0000002a 0000006F
0000002b 0000006E
0000002c 00000065

Assembler Directives 4-29

.data Assemble Into .data Section

Syntax .data

Description The .data directive tells the assembler to begin assembling source code into
the .data section; .data becomes the current section. The .data section is
normally used to contain tables of data or preinitialized variables.

For more information about COFF sections, see Chapter 2, Introduction to
Common Object File Format.

Example In this example, code is assembled into the .data and .text sections.
1 *kk *k%k * *
2 ** Reserve space in .data **

3 *k*k *k*k *
4 00000000 .data
5 00000000 .space 0CCh
6
7 * * *kk * *k%k * *k%k *k%k
8 ** Assemble into .text *x
9 * * * *k*k *
10 00000000 text
11 00000000 00800358 ABS AQAl
12
13
14 ** Assemble into .data **
15 FeeResbecbbocboioriobiooikokkiokok oo
16 000000cc table: .data
17 000000cc FFFFFFFF .word -1
18 000000d0 000000FF .byte OFFh
19
20 * wxx wxx
21 ** Assemble into .text *x
22 wxx * * * * * *
23 00000004 text
24 00000004 008001A0 MV AOQAl
25
26 kel el kR ok
27 ** Resume assembling into the .data section **
28 *hkkx
29 000000d1 .data
30 000000d4 00000000 coeff .word 00h,0ah,0bh
000000d8 0000000A
000000dc 0000000B

4-30

Initialize Double-Precision Floating-Point Value .double

Syntax .double valueq [, ..., valuey]

Description The .double directive places the IEEE double-precision floating-point repre-
sentation of one or more floating-point values into the current section. Each
value must be a floating-point constant or a symbol that has been equated to
a floating-point constant. Each constant is converted to a floating-point value
in IEEE double-precision 64-bit format. Double-precision floating point
constants are aligned to a double word boundary.

The 64-bit value is stored in the format shown in Figure 4-5.

Figure 4-5. Double-Precision Floating-Point Format

[sEEEEEEEEEEEMMMMMMMMMMMM MMM M MMM M
31 20 0

IMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl

31 0
Legend: S = sign (1 bit)

E = exponent (11-bit biased)

M = mantissa (52-bit fraction)

When you use .double in a .struct/.endstruct sequence, .double defines a
member’s size; it does not initialize memory. For more information about
.struct/.endstruct, see page 4-67.

Example This example shows the .double directive.

1 00000000 2C280291 .double —2.0e25
00000004 C5308B2A

2 00000008 00000000 .double 6
0000000c 40180000

3 00000010 00000000 .double 456
00000014 407C8000

Assembler Directives 4-31

.drlist/.drnolist

Syntax

Description

Example

4-32

Control Listing of Directives

.drlist
.drnolist

Two directives enable you to control the printing of assembler directives to the
listing file:

[0 The .drlist directive enables the printing of all directives to the listing file.

[0 The .drnolist directive suppresses the printing of the following directives
to the listing file:

.asg .fcnolist .sslist
.break Jlength .ssnolist
.emsg .mlist .var
.eval .mmsg .width
fclist .mnolist .wmsg

By default, the assembler acts as if the .drlist directive had been specified.

This example shows how .drnolistinhibits the listing of the specified directives.

Source file:
length 65
.width 85
.asg 0, x
doop 2
.eval x+1, x
.endloop
.drnolist
length 55
.width 95
.asg 1,x
doop 3
.eval x+1, x
.endloop
Listing file:
3 .asg 0, x
4 Jdoop 2
5 .eval x+1, x
6 .endloop
1 .eval 0+1, x
1 .eval 1+1,x
7
8 .drnolist
12 doop 3
13 .eval x+1, x
14 .endloop

Syntax

Description

Example

Define Messages .emsg/.mmsg/.wmsg

.emsg string
.mmsg string
.wmsg string

These directives allow you to define your own error and warning messages.
When you use these directives, the assembler tracks the number of errors and
warnings it encounters and prints these numbers on the last line of the listing
file.

[0 The .emsg directive sends an error message to the standard output
device in the same manner as the assembler. Itincrements the error count
and prevents the assembler from producing an object file.

[The .mmsg directive sends an assembly-time message to the standard
output device in the same manner as the .emsg and .wmsg directives. It
does not, however, set the error or warning counts, and it does not prevent
the assembler from producing an object file.

1 The .wmsg directive sends a warning message to the standard output
device in the same manner as the .emsg directive. It increments the
warning countrather than the error count, however, and it does not prevent
the assembler from producing an object file.

In this example, the message ERROR — MISSING PARAMETER is sent to
the standard output device.

Source file:

.global PARAM
MSG_EX .macro parml
if $symlen(parml) =0
.emsg "ERROR — MISSING PARAMETER”

.else

MVK parml, Al
.endif

.endm

MSG_EX PARAM
MSG_EX

Assembler Directives 4-33

.emsg/.mmsg/.wmsg Define Messages

Listing file:
1 .global PARAM
2 MSG_EX .macro parml
3 if $symlen(parml) =0
4 .emsg "ERROR — MISSING PARAMETER”
5 .else
6 MVK parml, Al
7 .endif
8 .endm
9
10 00000000 MSG_EX PARAM
1 if $symlen(parml) =0
1 .emsg "ERROR — MISSING PARAMETER”
1 .else
1 00000000 00800028! MVK PARAM, Al
1 .endif
11
12 00000004 MSG_EX

if - $symlen(parml) =0

.emsg "ERROR — MISSING PARAMETER”
#kx USER ERROR ***** — : ERROR — MISSING PARAMETER
.else
MVK parml, Al
.endif

N N N

Error, No Warnings

In addition, the following messages are sent to standard output by the assem-
bler:

TMS320C6x COFF Assembler Version x.xx

Copyright (c) 1996 Texas Instruments Incorporated

PASS 1

PASS 2

*** ERROR! line 12: ***** USER ERROR ***** —: ERROR — MISSING PARAMETER
.emsg "ERROR — MISSING PARAMETER”

1 Error, No Warnings

Errors in source — Assembler Aborted

4-34

Syntax

Description

Example

End Assembly .end

.end

The .end directive is optional and terminates assembly. The assembler
ignores any source statements that follow a .end directive. If you use the .end
directive, it must be the last source statement of a program.

This directive has the same effect as an end-of-file character. You can use .end
when you are debugging and you want to stop assembling at a specific point
in your code.

Note: Ending a Macro

Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.

This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

Source file:

start: .text
ZERO A0
ZERO A1l
ZERO A3
.end
ZERO A4

Listing file:

1 00000000 start: .text

2 00000000 0O00O005E0 ZERO A0

3 00000004 008425E0 ZERO Al

4 00000008 018C65E0 ZERO A3

5 .end

Assembler Directives 4-35

fclist/.fcnolist

Syntax

Description

Example

1
2
3
4
5
6
7
8

©

00000000 a
00000001 b

Control Listing of False Conditional Blocks

fclist
fcnolist

Two directives enable you to control the listing of false conditional blocks:

[0 The .fclist directive allows the listing of false conditional blocks (condi-
tional blocks that do not produce code).

(1 The .fcnolist directive suppresses the listing of false conditional blocks
until a .fclist directive is encountered. With .fcnolist, only code in condi-
tional blocks that are actually assembled appears in the listing. The .if,
.elseif, .else, and .endif directives do not appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist
directive had been used.

This example shows the assembly language and listing files for code with and
without the conditional blocks listed.

Source file:

a .set 0
b .set 1
fclist ; list false conditional blocks
if a
MVK 5,A0
.else
MVK 0,A0
.endif
fcnolist ; do not list false conditional blocks
if a
MVK 5,A0
.else
MVK 0,A0
.endif

Listing file:

set O
set 1

fclist ; list false conditional blocks
a

MVK 5,A0

00000000 00000028 MVK 0,A0
.endif

.fcnolist ; do not list false conditional blocks

13 00000004 00000028 MVK 0,A0

4-36

Syntax

Description

Initialize Field .field

field value [, size in bits]

The .field directive initializes a multiple-bit field within a single word of memory.
This directive has two operands:

(1 The valueis arequired parameter; itis an expression that is evaluated and
placed in the field. The value must be absolute.

[The size in bits is an optional parameter; it specifies a number from 1 to
32, which is the number of bits in the field. If you do not specify a size, the
assembler assumes the size is 32 bits. If you specify a value that cannot
fitin size in bits, the assembler truncates the value and issues a warning
message. For example, .field 3,1 causes the assembler to truncate the
value 3 to 1; the assembler also prints the message:

*** \WARNING! line 21: W0001: Field value truncated to 1
field 3,1

Successive .field directives pack values into the specified number of bits start-
ing at the current 32-bit slot. Fields are packed starting at the least significant
bit (bit 0), moving toward the most significant bit (bit 31) as more fields are
added. If the assembler encounters a field size that does not fit in the current
32-bit word, it fills the remaining bits of the current byte with 0s, increments the
SPC to the next word boundary, and begins packing fields into the next word.

You can use the .align directive to force the next .field directive to begin packing
into a new word.

If you use a label, it points to the byte that contains the specified field.

Whenyou use .field in a .struct/.endstruct sequence, .field defines amember’s
size; it does not initialize memory. For more information about .struct/
.endstruct, see page 4-67.

Assembler Directives 4-37

field Initialize Field

Example This example shows how fields are packed into a word. The SPC does not
change until aword is filled and the next word is begun. Figure 4—6 shows how
the directives in this example affect memory.

1 * * * * *kk *

2 ** |nitialize a 24-bit field. **

3 * *kk * *kk *

4 00000000 00BBCCDD field OBBCCDDh, 24
5

6

7 ** |nitialize a 5-hit field **

8 *kkkkkkkkkhkkhhkkhhkhhhkhhhik *k%k

9 00000000 OABBCCDD field OAh, 5
10

11 Rk *

12 ** |nitialize a 4-bit field **

13 xk in a new word. *k

14

15 00000004 0000000C field OCh, 4
16

17 HHFIRRIAFIIKRAFIIXKAK RAFIR KA KK

18 ** |nitialize a 3—bit field **

19

20 00000004 0000001C x: field 01h, 3
21

22 * *

23 ** |nitialize a 32—-bit field **

24 ** relocatable field in the **

25 ** next word *x

26 * *

27 00000008 00000004’ field x

4-38

Initialize Field .field

Figure 4—6. The .field Directive

Word Contents Code
31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

@0 | 101110111100110011011101]

.field 0BBCCDDh, 24

24-bit field
313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

®o | 01010/101110111100110011011101| feldoans

\//
5-bit field

24-Dit field
31302928272625242322212019181716 1514131211109 8 7 6 5 4

3210
@0 JoooJor1o010/101110111100110011011

3

1

1| field OCh, 4

31302928272625242322212019181716 1514131211109 8 7 6 5 4

1|

0
of
— —
4-bit field
31302928272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

@1 | 0011100| fed oin3

——
3-bit field

31302028272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0
©1 [0000000000000000000000000[0011100] fed x

31302028272625242322212019181716 1514131211109 8 7 6 54 3 2 1 0

2 [0000000000000000000000000000000 1

2 1
10
21
10

Assembler Directives 4-39

float Initialize Single-Precision Floating-Point Value

Syntax float valuel|, ..., valueg]

Description The .float directive placesthe IEEE single-precision floating-point representa-
tion of a single floating-point constant into a word in the current section. The
value must be a floating-point constant or a symbol that has been equated to
a floating-point constant. Each constant is converted to a floating-point value
in IEEE single-precision 32-bit format.

The 32-bit value is stored exponent byte first, most significant byte of fraction

second, and least significant byte of fraction third, in the format shown in
Figure 4-7.

Figure 4-7. Single-Precision Floating-Point Format

[SEEEEEEEElMMMMMMMMMMMMMMMMMMMM MMM
31 23 0

value = (-1)S x (1.0 + mantissa) x (2)exponent-127

Legend: S = sign (1 bit)
E = exponent (8-bit biased)
M = mantissa (23-bit normalized fraction)

When you use .float in a .struct/.endstruct sequence, .float defines a
member’s size; it does not initialize memory. For more information about
.struct/.endstruct, see page 4-67.

Example Following are examples of the .float directive:
1 00000000 E9045951 float —1.0e25
2 00000004 40400000 float 3
3 00000008 42F60000 float 123

4-40

Syntax

Description

Example

Identify Global Symbols .global/.def/.ref

.global symbol; [, ..., symbol,]
.def symboly [, ..., symbol,]
.ref symboly [, ..., symbol,]

Three directives identify global symbols that are defined externally or can be
referenced externally:

[The .def directive identifies a symbol that is defined in the current module
and can be accessed by other files. The assembler places this symbol in
the symbol table.

1 The .ref directive identifies a symbol that is used in the current module but
is defined in another module. The linker resolves this symbol’'s definition
at link time.

[The .global directive acts as a .ref or a .def, as needed.

A global symbolis defined in the same manner as any other symbol; that is,
it appears as a label or is defined by the .set, .equ, .bss, or .usect directive. As
with all symbols, if a global symbol is defined more than once, the linker issues
a multiple-definition error. The .ref directive always creates a symbol table
entry for a symbol, whether the module uses the symbol or not; .global,
however, creates an entry only if the module actually uses the symbol.

A symbol can be declared global for either of two reasons:

(1 Ifthe symbol is not defined in the current module (which includes macro,
copy, and include files), the .global or .ref directive tells the assembler that
the symbol is defined in an external module. This prevents the assembler
from issuing an unresolved reference error. At link time, the linker looks
for the symbol’s definition in other modules.

[Ifthe symbolis defined in the current module, the .global or .def directive
declares that the symbol and its definition can be used externally by other
modules. These types of references are resolved at link time.

This example shows four files. The filel.Ist and file2.Ist refer to each other for
all symbols used; file3.Ist and file4.Ist are similarly related.

Thefilel.Ist andfile3.Ist files are equivalent. Both files define the symbol INIT
and make it available to other modules; both files use the external symbols X,
Y, and Z. Also, filel.Ist uses the .global directive to identify these global
symbols; file3.Ist uses .ref and .def to identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X,
Y, and Z and make them available to other modules; both files use the external
symbol INIT. Also, file2.Ist uses the .global directive to identify these global
symbols; file4.Ist uses .ref and .def to identify the symbols.

Assembler Directives 4-41

.global/.def/.ref identify Global Symbols

filel.lst
1 ; Global symbol defined in this file
2 .global INIT
3 ; Global symbols defined in file2.Ist
4 .global X, Y, Z
5 00000000 INIT:
6 00000000 00902058 ADD.L1 0x01,A4,A1
7 00000004 00000000! word X
8 ;
9 ;
10 ; .
11 .end
file2.Ist
1 ; Global symbols defined in this file
2 .global X, Y, Z
3 ; Global symbol defined in filel.Ist
4 .global INIT
5 00000001 X: set 1
6 00000002 V: .set 2
7 00000003 Z: .set 3
8 00000000 00000000! .word INIT
9 ; .
10
11 ; .
12 .end
file3.Ist
1 ; Global symbol defined in this file
2 .def INIT
3 ; Global symbols defined in file4.Ist
4 ref X, Y,Z
5 00000000 INIT:
6 00000000 00902058 ADD.L1 0x01,A4,A1
7 00000004 00000000! word X
8 ; .
9 ;
10 ; .
11 .end
file4.Ist
1 ; Global symbols defined in this file
2 def X,Y,Z
3 ; Global symbol defined in file3.Ist
4 ref INIT
5 00000001 X: set 1
6 00000002 Y: .set 2
7 00000003 Z: .set 3
8 00000000 00000000! .word INIT
9 ;
10
11 : .
12 .end

Initialize Halfwords .half/.short

Syntax half - valuey [, ..., valuey]
.short value; [, ..., valuep]
Description The .half, and .short directives place one or more values into consecutive

halfwords in the current section. Each value is placed in a 2-byte slot by itself.
A value can be either:

[An expression that the assembler evaluates and treats as a 16-bit signed
or unsigned number

(1 A character string enclosed in double quotes. Each character in a string
represents a separate value and is stored alone in the least significant
eight bits of a 16-bit field, which is padded with Os.

The assembler truncates values greater than 16 bits. You can use as many
values as fit on a single line, but the total line length cannot exceed 200 charac-
ters.

If you use a label with .half or .short, it points to the location where the assem-
bler places the first byte.

The .half and .short directives perform a halfword (16-bit) alignment before
data is written to the section. This guarantees that data resides on a 16-bit
boundary.

When you use .half or .short in a .struct/.endstruct sequence, they define a
member’s size; they do not initialize memory. For more information about
.struct/.endstruct, see page 4-67.

Example In this example, .half is used to place 16-bit values (10, —1, abc, and a) into
consecutive halfwords in memory; .short is used to place 16-bit values (8, -3,
def, and b) into consecutive halfwords in memory. The label STRN has the
value 100ch, which is the location of the first initialized halfword for .short.

1 00000000 .space 100h * 16
2 00001000 0000000A .half 10, -1, "abc”, 'a’
00001002 O00OFFFF
00001004 00000061
00001006 00000062
00001008 00000063
0000100a 00000061
3 0000100c 00000008 STRN .short 8, -3, "def”, b’
0000100e O000FFFD
00001010 00000064
00001012 00000065
00001014 00000066
00001016 00000062

Assembler Directives 4-43

.if/.elseif/.else/.endif

Syntax

Description

4-44

Assemble Conditional Block

.if well-defined expression
[.elseif well-defined expression]
[.else]

.endif

Four directives provide conditional assembly:

a

a

The .if directive marks the beginning of a conditional block. The well-
defined expression is a required parameter.

W If the expression evaluates to true (nonzero), the assembler assem-
bles the code that follows the expression (up to a .elseif, .else, or
.endif).

B If the expression evaluates to false (0), the assembler assembles
code that follows a .elseif (if present), .else (if present), or .endif (if no
.elseif or .else is present).

The .elseif directive identifies a block of code to be assembled when the
.ifexpressionisfalse (0) and the .elseif expressionis true (nonzero). When
the .elseif expression is false, the assembler continues to the next .elseif
(if present), .else (if present), or .endif (if no .elseif or .else is present). The
.elseif directive is optional in the conditional block, and more than one
.elseif can be used. If an expression is false and there is no .elseif state-
ment, the assembler continues with the code that follows a .else (if pres-
ent) or a .endif.

The .else directive identifies a block of code that the assembler assembles
when the .if expression and all .elseif expressions are false (0). The .else
directive is optional in the conditional block; if an expression is false and
there is no .else statement, the assembler continues with the code that
follows the .endif.

The .endif directive terminates a conditional block.

The .elseif and .else directives can be used in the same conditional assembly
block, and the .elseif directive can be used more than once within a conditional
assembly block.

For information about relational operators, see subsection 3.9.4, Conditional
Expressions, on page 3-26.

Assemble Conditional Block .if/.elseif/.else/.endif

Example This example shows conditional assembly:
1 00000001 SYM1 .set 1
2 00000002 SYM2 .set 2
3 00000003 SYM3 .set 3
4 00000004 SYM4 .set 4
5
6 If_4: if SYM4 = SYM2 * SYM2
7 00000000 00000004 .byte SYM4 ; Equal values
8 .else
9 .byte SYM2 * SYM2 ; Unequal values
10 .endif
11
12 If_5: Jif SYM1<=10
13 00000001 0000000A .byte 10 ; Less than / equal
14 .else
15 .byte SYM1 : Greater than
16 .endif
17
18 If_6: Jif SYM3 * SYM2 = SYM4 + SYM2
19 .byte SYM3*SYM2 ; Unequal value
20 .else
21 00000002 00000008 .byte SYM4 + SYM4 ; Equal values
22 .endif
23
24 If_7: if - SYM1=SYM2
25 byte SYM1
26 .elseif SYM2 + SYM3 =5
27 00000003 00000005 .byte SYM2 + SYM3
28 .endif

Assembler Directives 4-45

.int/.long/.word Initialize 32-Bit Integer

Syntax int valuep [, ..., valueg]
Jdong value; [, ..., value,]
.word value; [, ..., valuen]
Description The .int, .long, and .word directives place one or more values into consecu-

Exal

4-46

tive words in the current section. Each value is placed in a 32-bit word by itself
and is aligned on a word boundary. A value can be either:

[0 An expression that the assembler evaluates and treats as a 32-bit signed
number

[A character string enclosed in double quotes. Each character in a string
represents a separate value and is stored alone in the least significant
eight bits of a 32-bit field, which is padded with Os.

Avalue can be either an absolute or a relocatable expression. If an expression
is relocatable, the assembler generates a relocation entry that refers to the
appropriate symbol; the linker can then correctly patch (relocate) the refer-
ence. This allows you to initialize memory with pointers to variables or labels.

You can use as many values as fit on a single line (200 characters). If you use
a label with .int, .long, or .word, it points to the first word that is initialized.

When you use .int, .long, or .word directives in a .struct/.endstruct sequence,
they define a member’s size; they do not initialize memory. For more informa-
tion about .struct/.endstruct, see page 4-67.

mple 1 This example uses the .int directive to initialize words. Notice that the symbol
SYMPTR puts the symbol’s address in the object code and generates a relo-
catable reference (indicated by the — character appended to the object word).

1 00000000 .space 73h
2 00000000 .bss PAGE, 128
3 00000080 .bss SYMPTR, 3
4 00000074 003C12E4 INST: LDW.D2 *++B15[0],A0
5 00000078 0000000A .int 10, SYMPTR, -1, 35 +'a’, INST
0000007c 00000080—
00000080 FFFFFFFF
00000084 00000084
00000088 00000074’

Initialize 32-Bit Integer .int/.long/.word

Example 2 This example initializes two 32-bit fields and defines DAT1 to point to the first
location. The contents of the resulting 32-bit fields are FFFABCDh and 141h.

1 00000000 FFFFABCD DAT1: .long OFFFFABCDh,’A'+100h
00000004 00000141

Example 3 This example initializes five words. The symbol WordX points to the first word.

1 00000000 00000C80 WordX: .word 3200,1+'AB’,—'AF’,0F410h,’A’
00000004 00004242
00000008 FFFFB9BF
0000000c 0000F410
00000010 00000041

Note: Data Size of longs

Forthe 'C6x C compiler, along data value is 40 bits. For the 'C6x assembler,
a long data value is 32 bits. Therefore, the .long directive treats values
assigned to it as 32-bit values.

Assembler Directives 4-47

label Create a Loadtime Address Label

Syntax

Description

Example

4-48

label symbol

The .label directive defines a special symbol that refers to the loadtime
address rather than the runtime address within the current section. Most
sections created by the assembler have relocatable addresses. The assem-
bler assembles each section as if it started at 0, and the linker relocates it to
the address at which it loads and runs.

For some applications, itis desirable to have a section load at one address and
run at a differentaddress. For example, you may want to load a block of perfor-
mance-critical code into slower memory to save space and then move the
code to high-speed memory to run it. Such a section is assigned two
addresses at link time: a load address and a run address. All labels defined
in the section are relocated to refer to the runtime address so that references
to the section (such as branches) are correct when the code runs.

The .label directive creates a special label that refers to the loadtime address.
This function is useful primarily to designate where the section was loaded for
purposes of the code that relocates the section.

This example shows the use of a loadtime address label.

.sect ".examp”

Jabel examp_load : load address of section
start: ; run address of section
<code>
finish: ; run address of section end
Jlabel examp_end ; load address of section end

For more information about assigning runtime and loadtime addresses in the
linker, see Section 7.9, Specifying a Section’s Runtime Address, on page 7-36.

Syntax

Description

Example

Set Listing Page Size

Jength/.width

length [page length]
width [page width]

Two directives allow you to control the size of the output listing file.

1 The.length directive sets the page length of the output listing file. It affects
the current and following pages. You can reset the page length with

another .length directive.

B Defaultlength: 60 lines. If you do not use the .length directive or if you
use the .length directive without specifying the page length, the output

listing length defaults to 60 lines.
B Minimum length: 1 line
B Maximum length: 32 767 lines

[The .width directive sets the page width of the output listing file. It affects
the next line assembled and the lines following. You can reset the page

width with another .width directive.

B Defaultwidth: 132 characters. If you do not use the .width directive or if
you use the .width directive without specifying a page width, the output
listing width defaults to 132 characters.

B Minimum width: 80 characters

B Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value,
and object code are counted as part of the width of a line. Comments and other
portions of a source statement that extend beyond the page width are trun-

cated in the listing.

The assembler does not list the .width and .length directives.

The following example shows how to change the page length and width.

*hkkhkhkkhkkkhhrhhrhrhhrhrhhrhrhhrhrhihrhrrx

*k Page length = 65 lines
*x Page width = 85 characters
Jength 65
.width 85
kkkkkkkkkkkkkkhkkkkkkhkkkkhkkkhkkkkhkkkhkhkkhkkkhkkkhkkkhkkkhkkk
o Page length = 55 lines
*k Page width = 100 characters
Jlength 55
.width 100

*%

*%

*%
*%

Assembler Directives

4-49

Jist/.nolist Start/Stop Source Listing

Syntax Jist
.nolist
Description Two directives enable you to control the printing of the source listing:

[The .list directive allows the printing of the source listing.

(1 The.nolist directive suppresses the source listing output until a .list direc-
tive is encountered. The .nolist directive can be used to reduce assembly
time and the source listing size. It can be used in macro definitions to
suppress the listing of the macro expansion.

The assembler does not print the .list or .nolist directives or the source state-
ments that appear after a .nolist directive. However, it continues to increment
the line counter. You can nest the .list/.nolist directives; each .nolist needs a
matching .list to restore the listing.

By default, the source listing is printed to the listing file; the assembler acts as
if the .list directive had been used. However, if you do not request a listing file
when you invoke the assembler by including the —| option on the command line
(see page 3-5), the assembler ignores the .list directive.

4-50

Example

Start/Stop Source Listing .list/.nolist

This example shows how the .list and .nolist directives turn the output listing
on and off. The .nolist, the table: .data through .byte lines, and the .list direc-
tives do not appear in the listing file. Also, the line counter is incremented even
when source statements are not listed.

Source file:

.data
.space 0CCh
ext
ABS AQAl

.nolist

table: .data

.word -1
.byte OFFh

Jist
text

MV AO0,Al
.data

coeff .word 00h,0ah,0bh

Listing file:
1 00000000 .data
2 00000000 .space 0CCh
3 00000000 text
4 00000000 00800358 ABS AQ0Al
5
13
14 00000004 .text
15 00000004 008001A0 MV A0Al
16 000000d1 .data
17 000000d4 00000000 coeff .word 00h,0ah,0bh
000000d8 0000000A

000000dc 0000000B

Assembler Directives

4-51

loop/.break/.endloop

Syntax

Description

4-52

Assemble Code Block Repeatedly

loop [well-defined expression]
[.break [well-defined expression]]
.endloop

Three directives allow you to repeatedly assemble a block of code:

a

The .loop directive begins a repeatable block of code. The optional
expression evaluates to the loop count (the number of loops to be
performed). If there is no well-defined expression, the loop count defaults
to 1024, unless the assembler first encounters a .break directive with an
expression that is true (nonzero) or omitted.

The .break directive, along with its expression, is optional. This means
that when you use the .loop construct, you do not have to use the .break
construct. The .break directive terminates a repeatable block of code only
if the well-defined expressionis true (nonzero) or omitted, and the assem-
bler breaks the loop and assembles the code after the .endloop directive.
If the expression is false (evaluates to 0), the loop continues.

The .endloop directive terminates a repeatable block of code; it executes
when the .break directive is true (nonzero) or when the number of loops
performed equals the loop count given by .loop.

Example

Assemble Code Block Repeatedly

Jloop/.break/.endloop

This example illustrates how these directives can be used with the .eval direc-
tive. The code in the first six lines expands to the code immediately following

those six lines.

.eval
COEF

.word

.eval

OO WNE

00000000 00000000
.eval

00000004 00000064
.eval

00000008 000000C8
.eval

0000000c 0000012C
.eval

00000010 00000190
.eval

00000014 000001F4
.eval

0,X
x*100

X+1, X
.word

0+1, x

.word
1+1, x

.word
2+1, x

.word
3+1, x

.word
4+1, X

.word
5+1, x

.loop

.break x=6

.endloop
0*100

.break 1=6
1*100

.break 2=6
2*100

.break 3=6
3*100

.break 4=6
4*100

.break 5=6
5*100

.break 6=6

Assembler Directives

4-53

.mlib Define Macro Library

Syntax

Description

4-54

.mlib ["]filename[”]

The .mlib directive provides the assembler with the filename of amacro library.
A macro library is a collection of files that contain macro definitions. The macro
definition files are bound into a single file (called a library or archive) by the
archiver.

Each file in a macro library contains one macro definition that corresponds to
the name of the file. The filename of a macro library member must be the same
as the macro name, and its extension must be .asm. The filename must follow
host operating system conventions; it can be enclosed in double quotes. You
can specify a full pathname (for example, c:\320tools\macs.lib). If you do not
specify a full pathname, the assembler searches for the file in the following
locations in the order given:

1) The directory that contains the current source file
2) Any directories named with the —i assembler option
3) Any directories specified by the A_DIR environment variable

For more information about the —i option and A_DIR, see Section 3.4, Naming
Alternate Directories for Assembler Input, on page 3-6.

When the assembler encounters a .mlib directive, it opens the library specified
by the filename and creates a table of the library’s contents. The assembler
enters the names of the individual library members into the opcode table as
library entries. This redefines any existing opcodes or macros that have the
same name. If one of these macros is called, the assembler extracts the entry
from the library and loads it into the macro table. The assembler expands the
library entry in the same way it expands other macros, but it does not place the
source code into the listing. Only macros that are actually called from the
library are extracted, and they are extracted only once.

For more information on macros and macro libraries, see Chapter 5, Macro
Language.

Define Macro Library —.mlib

Example This example creates a macro library that defines two macros, incl and decl.
The file incl.asm contains the definition of incl, and decl.asm contains the
definition of dec1.

incl.asm decl.asm
* Macro for incrementing * Macro for decrementing
incl .macro A decl .macro A
ADD A1A SUuB A1lA
.endm .endm

Use the archiver to create a macro library:
aréx —a mac incl.asm decl.asm

Now you can use the .mlib directive to reference the macro library and define
the incl and decl macros:

1 .mlib "mac.lib”
2
3 * Macro Call
4 00000000 incl A0
1 00000000 000021A0 ADD A0,1,A0
5
6 * Macro Call
7 00000004 decl BO

1 00000004 0003E1A2 SUB BO0,1,BO

Assembler Directives 4-55

.mlist/.mnolist

Syntax

Description

Example

4-56

Start/Stop Macro Expansion Listing

.mlist
.mnolist

Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

(1 The .mlist directive allows macro and .loop/.endloop block expansions in
the listing file.

(1 The .mnolist directive suppresses macro and .loop/.endloop block
expansions in the listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

For more information on macros and macro libraries, see Chapter 5, Macro
Language. For more information about .loop and .endloop, see page 4-52.

This example defines a macro named STR_3. The first time the macro is
called, the macro expansion is listed (by default). The second time the macro
is called, the macro expansion is not listed, because a .mnolist directive was
assembled. The third time the macro is called, the macro expansion is again
listed because a .mlist directive was assembled.

1 STR_3 .macro P1, P2, P3
2 .string ":pl:”, ":p2:”, ":p3:”
3 .endm

4

5 00000000 STR_3"as”, "I", "am”

1 00000000 0000003A
00000001 00000070
00000002 00000031
00000003 0000003A
00000004 0000003A
00000005 00000070
00000006 00000032
00000007 0000003A
00000008 0000003A
00000009 00000070
0000000a 00000033
0000000b 0000003A

6 .mnolist
7 0000000c STR_3 "as”, "I", "am”

8 .mlist

9 00000018 STR_3 "as”, "I", "am”

1 00000018 0000003A .string ":pl:”, ":p2:”, ":p3:”
00000019 00000070
0000001a 00000031
0000001b 0000003A
0000001c 0O000003A
0000001d 00000070
0000001e 00000032
0000001f 0000003A
00000020 0000003A
00000021 00000070
00000022 00000033
00000023 0000003A

.string ":pl:”, ":p2:”, ":p3:”

Syntax

Description

Example

Terminate Local Symbol Block .newblock

.newblock

The .newblock directive undefines any local labels currently defined. Local
labels, by nature, are temporary; the .newblock directive resets them and
terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit, or
name?, where name is a legal symbol name. Unlike other labels, local labels
are intended to be used locally, cannot be used in expressions, and do not
qualify for branch expansion if used with a branch. They can be used only as
operands in 8-bit jump instructions. Local labels are not included in the symbol
table.

After a local label has been defined and (perhaps) used, you should use the
.newblock directive to reset it. The .text, .data, and .sect directives also reset
local labels. Local labels that are defined within an include file are not valid
outside of the include file.

For more information on the use of local labels, see subsection 3.8.2, Local
Labels, on page 3-16.

This example shows how the local label $1 is declared, reset, and then
declared again.

1 .global tablel, table2

2

3 00000000 00000028! MVK tablel,A0
4 00000004 00000068! MVKH tablel,A0
5 00000008 008031A9 MVK 99, Al

6 0000000c 010848C0 || ZERO A2

7

8 00000010 80000212 $1:[Al] B $1

9 00000014 01003674 STW A2, *AO++

10 00000018 0087E1A0 SUB Al,1A1

11 0000001c 00004000 NOP 3

12

13 .newblock ; undefine $1
14

15 00000020 00000028! MVK table2,A0

16 00000024 00000068! MVKH table2,A0

17 00000028 008031A9 MVK 99, Al

18 0000002c 010829CO0 || SUB A2,1,A2

19

20 00000030 80000212 $1:[A1]B $1

21 00000034 01003674 STW A2, *A0++
22 00000038 0087E1A0 SuB Al1A1l
23 0000003c 00004000 NOP 3

Assembler Directives 4-57

.option Select Listing Options

Syntax .option optiony[, options, . . .]

Description The .option directive selects options for the assembler output listing. The
options must be separated by commas; each option selects a listing feature.
These are valid options:

A turns on listing of all directives and data, and subsequent expan-
sions, macros, and blocks.

B limits the listing of .byte and .char directives to one line.

D turns off the listing of certain directives (same effect as .drnolist).

H limits the listing of .half and .short directives to one line.

L limits the listing of .long directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist).

@] turns on listing (performs .list).

R resets the B, H, L, M, T, and W directives (turns off the limits of
B, H, L, M, T, and W).

T limits the listing of .string directives to one line.

w limits the listing of .word and .int directives to one line.

X produces a cross-reference listing of symbols. You can also

obtain a cross-reference listing by invoking the assembler with
the —x option (see page 3-5).

Options are not case sensitive.

4-58

Example

Select Listing Options .option

This example shows how to limit the listings of the .byte, .char, .int, .word, and
.string directives to one line each.

1 *%k%k * * * * *k%k

2 ** Limit the listing of .byte, .char, **

3 ** int, .word, and .string **

4 ** directives to 1 line each. **

5 * *%k%k * * * *

6 .option B, W, T

7 00000000 000000BD .byte —'C’, 0BOh, 5

8 00000003 000000BC .char -'D’, 0COh, 6

9 00000008 0000000A .int 10, 35 +’a’, "abc”

10 0000001c AABBCCDD long OAABBCCDDh, 536 +'A’
00000020 00000259

11 00000024 000015AA .word 5546, 78h

12 0000002c 00000052 .string "Registers”

13

15 ** Reset the listing options. **

16 * ik ik *

17 .option R

18 00000035 000000BD .byte —'C’, 0BOh, 5
00000036 000000B0O
00000037 00000005

19 00000038 000000BC .char —'D’, 0COh, 6
00000039 000000CO
0000003a 00000006

20 0000003c 0000000A .int 10, 35+ 'a’, "abc”
00000040 00000084
00000044 00000061
00000048 00000062
0000004c 00000063

21 00000050 AABBCCDD long OAABBCCDDh, 536 + A’
00000054 00000259

22 00000058 000015AA .word 5546, 78h
0000005c 00000078

23 00000060 00000052 .string "Registers”

00000061 00000065
00000062 00000067
00000063 00000069
00000064 00000073
00000065 00000074
00000066 00000065
00000067 00000072
00000068 00000073

Assembler Directives 4-59

.page Eject Page in Listing

Syntax .page

Description The .page directive produces a page ejectin the listing file. The .page directive
is not printed in the source listing, but the assembler increments the line
counter when it encounters the .page directive. Using the .page directive to
divide the source listing into logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to begin
a new page of the source listing.
Source file:

title "*** Page Directive Example ****”

.page
Listing file:

TMS320C6x COFF Assembler Version x.xx Tue Apr 14 17:16:51 1997
Copyright (c) 1996-1997 Texas Instruments Incorporated
+% Page Directive Example ** PAGE 1

2 ;

3 ;

4 ; .
TMS320C6x COFF Assembler Version x.xx Tue Apr 14 17:16:51 1997
Copyright (c) 1996-1997 Texas Instruments Incorporated
*xxx Page Directive Example **** PAGE 2

No Errors, No Warnings

4-60

Syntax

Description

Example

Assemble Into Named Section .Sect

.sect " section name”

The .sect directive defines a named section that can be used like the default
.textand .data sections. The .sect directive tells the assembler to begin assem-
bling source code into the named section.

The section name identifies the section. The section name is significant to 200
characters and must be enclosed in double quotes. A section name can
contain a subsection name in the form section name: subsection name.

For more information about COFF sections, see Chapter 2, Introduction to
Common Object File Format.

This example defines one special-purpose section, vars, and assembles code
into it.

1
2 ** Begin assembling into .text section. **
3
4 00000000 text

5 00000000 000005E0 ZERO A0
6 00000004 008425E0 ZERO Al
7

8
9 ** Begin assembling into vars section. **
10
11 00000000 .sect ’vars”
12 00000000 4048F5C3 pi .float 3.14

13 00000004 000007D0 max .int 2000

14 00000008 00000001 min .int 1

17 ** Resume assembling into .text section. **

19 00000008 text
20 00000008 010000A8 MVK 1,A2
21 0000000c 018000A8 MVK 1,A3

24 ** Resume assembling into vars section. **

26 0000000c .sect "vars”
27 0000000c 00000019 count .short 25

Assembler Directives 4-61

.set/.equ Define Assembly-Time Constant

Syntax symbol .set value
symbol .equ value

Description The .set and .equ directives equate a constant value to a symbol. The symbol
can then be used in place of a value in assembly source. This allows you to
equate meaningful names with constants and other values. The .setand .equ
directives are identical and can be used interchangeably.

(1 The symbolis a label that must appear in the label field.

[The value must be a well-defined expression, that is, all symbols in the
expression must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module
cannot be used in the expression. If the expression is relocatable, the symbol
to which it is assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value
is not part of the actual object code and is not written to the output file.

Symbols defined with .set or .equ can be made externally visible with the .def
or .global directive (see page 4-41). In this way, you can define global absolute

constants.
Example This example shows how symbols can be assigned with .set and .equ.
1 * * *
2 ** Equate symbol AUX_R1 to register A1 **
3 ** and use it instead of the register. **
4 *hkkkkkkkkkhhkkhhhkhhhkhhhkhhhkhhhhhhhhhhhhhhiid
5 00000001 AUX_R1 .set Al
6 00000000 00B802D4 STH AUX_R1,*+B14
7
8 * * *kk * *
9 ** Set symbol index to an integer expr. **
10 ** and use it as an immediate operand. **
11 * * * *
12 00000035 INDEX .equ 100/2 +3
13 00000004 01001ADO ADDK INDEX, A2
14
15 * ok * * *
16 ** Set symbol SYMTAB to a relocatable expr. **
17 ** and use it as a relocatable operand. **
18 * *
19 00000008 0000000A LABEL .word 10
20 00000009’ SYMTAB .set LABEL +1
21
22
23 ** Set symbol NSYMS equal to the symbol **
24 ** INDEX and use it as you would INDEX. **
25 Ak * *
26 00000035 NSYMS .set INDEX
27 0000000c 00000035 .word NSYMS

4-62

Reserve Space .space/.bes

Syntax .space size in bytes
.bes size in bytes

Description The .space and .bes directives reserve the number of bytes given by size in
bytesin the current section and fill them with 0s. The section program counter
is incremented to point to the word following the reserved space.

When you use a label with the .space directive, it points to the first byte
reserved. When you use a label with the .bes directive, it points to the lastbyte

reserved.
Example This example shows how memory is reserved with the .space and .bes direc-

tives.

1 xxxxxxxxxxxxxxxxxxxxxxx *kkkk

2 ** Begin assembling into the .text section. **

3 *k%k *k%k * *kkkk *k%k *kkkk *k%k *kkkk

4 00000000 text

5

6 ** Reserve OF0 bytes (15 words in .text section). **

7

8 00000000 .space OFOh

9 000000f0 00000100 .word 100h, 200h

000000f4 00000200

10 Rk Rk Rk Rk

11 ** Begin assembling into the .data section. **

12 * * * * * ok

13 00000000 .data

14 00000000 00000049 .string "In .data”

00000001 0000006E
00000002 00000020

00000003 0000002E

00000004 00000064

00000005 00000061

00000006 00000074

00000007 00000061
15 Kkkkk * *
16 ** Reserve 100 bytes in the .data section; **
17 *k RES_1 points to the first word *x
18 * that contains reserved bytes. **
19 * Hkk * * * * *
20 00000008 RES_1: .space 100
21 0000006c 0000000F .word 15
22 00000070 00000008” .word RES_1
23
24 ** Reserve 20 bytes in the .data section; **
25 *x RES_2 points to the last word *x
26 * that contains reserved bytes. **
27
28 00000087 RES_2: .bes 20
29 00000088 00000036 .word 36h
30 0000008c 00000087 .word RES_2

Assembler Directives 4-63

.sslist/.ssnolist Control Listing of Substitution Symbols

Syntax .sslist
.ssnolist
Description Two directives allow you to control substitution symbol expansion in the listing
file:

[0 The.sslist directive allows substitution symbol expansionin the listing file.
The expanded line appears below the actual source line.

[0 The .ssnolist directive suppresses substitution symbol expansion in the
listing file.

By default, all substitution symbol expansion in the listing file is suppressed;
the assembler acts as if the .ssnolist directive had been used.

Lines with the pound (#) character denote expanded substitution symbols.

4-64

Example

Control Listing of Substitution Symbols

.sslist/.ssnolist

This example shows code that, by default, suppresses the listing of substitu-

tion symbol expansion, and it shows the .sslist directive assembled, instructing
the assembler to list substitution symbol code expansion.

PRRRR

HRPRPRPRHRP#RP

1 00000000 .bss x4
2 00000004 .bss y4
3 00000008 .bss z,4
4
5 addm .macro srcl,src2,dst
6 LDW *+B14(:srcl:), AO
7 LDW *+B14(:src2:), Al
8 NOP 4
9 ADD A0,A1,A0
10 STW A0,*+B14(:dst:)
11 .endm
12
13 00000000 addm x)y,z
00000000 0000006C— LDW *+B14(x), A0
00000004 0080016C— LDW *+Bl14(y), A1l
00000008 00006000 NOP 4
0000000c 000401E0 ADD AO0,A1,A0
00000010 0000027C— STW AO0,*+B14(z)
14
15 .sslist
16 00000014 addm x)y,z
00000014 0000006C— LDW *+B14(:srcl:), A0
LDW *+B14(x), A0
00000018 0080016C— LDW *+B14(:src2:), Al
LDW *+B14(y), Al
0000001c 00006000 NOP 4
00000020 000401EO0 ADD AO0,A1,A0
00000024 0000027C— STW AO0,*+B14(:dst:)
STW A0,*+B14(z)
17

Assembler Directives 4-65

.String Initialize Text

Syntax .string {expry | "string;™} [, ..., {expmn, | "string,"}]

Description The .string directive places 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

(1 An expression that the assembler evaluates and treats as an 8-bit signed
number.

(1 A character string enclosed in double quotes. Each character in a string
represents a separate value, and values are stored in consecutive bytes.
The entire string must be enclosed in quotes.

The assembler truncates any values that are greater than eight bits. You can
have up to 100 operands, but they must fit on a single source statement line.

If you use a label with .string, it points to the location of the first byte that is
initialized.

When you use .string in a .struct/.endstruct sequence, .string defines a
member’s size; it does not initialize memory. For more information about
.struct/.endstruct, see page 4-67.

Example In this example, 8-bit values are placed into consecutive bytes in the current
section. The label Str_Ptr has the value Oh, which is the location of the first
initialized byte.

1 00000000 00000041 Str_Ptr: .string "ABCD”
00000001 00000042
00000002 00000043
00000003 00000044
2 00000004 00000041 .string 41h, 42h, 43h,
44h
00000005 00000042
00000006 00000043
00000007 00000044
3 00000008 00000041 .string "Austin”,
"Houston”
00000009 00000075
0000000a 00000073
0000000b 00000074
0000000c 00000069
0000000d 0000006E
0000000e 00000048
0000000f 0000006F
00000010 00000075
00000011 00000073
00000012 00000074
00000013 0000006F
00000014 0000006E
4 00000015 00000030 .string 36 + 12

4-66

Syntax

Description

Declare Structure Type .Struct/.endstruct/.tag

[stag] .Struct [expr]
[memp] element [exprp]
[mem] element [exprq]
[memp] .tag stag [exprn]
[memp] element [expmy]
[size] .endstruct

label .tag stag

The .struct directive assigns symbolic offsets to the elements of a data struc-
ture definition. This allows you to group similar data elements together and let
the assembler calculate the element offset. This is similar to a C structure or
a Pascal record. The .struct directive does not allocate memory; it merely
creates a symbolic template that can be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures that
contain other structures. The .tag directive does not allocate memory. The
structure tag (stag) of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct,
and .tag directives:

(1 The elementis one of the following descriptors: .string, .byte, .char, .int,
.half, .short, .word, .long, .double, .float, .tag, or .field. All of these except
.tag are typical directives that initialize memory. Following a .struct direc-
tive, these directives describe the structure element’s size. They do not
allocate memory. A .tag directive is a special case because stag must be
used (as in the definition of stag).

[The expris an optional expression indicating the beginning offset of the
structure. The default starting point for a structure is 0.

(1 The expryy is an optional expression for the number of elements
described. This value defaults to 1. A .string element is considered to be
one byte in size, and a .field element is one bit.

[The memyy is an optional label for a member of the structure. This label
is absolute and equates to the present offset from the beginning of the
structure. A label for a structure member cannot be declared global.

Assembler Directives 4-67

.struct/.endstruct/.tag

a

a

Declare Structure Type

The size is an optional label for the total size of the structure.

The stag is the structure’s tag. Its value is associated with the beginning
of the structure. If no stag is present, the assembler puts the structure
members in the global symbol table with the value of their absolute offset
from the top of the structure. A .stag is optional for .struct, but is required
for .tag.

Note: Directives That Can Appear in a .struct/.endstruct Sequence

The only directives that can appear in a .struct/.endstruct sequence are ele-
ment descriptors, conditional assembly directives, and the .align directive,
which aligns the member offsets on word boundaries. Empty structures are
illegal.

These examples show various uses of the .struct, .tag, and .endstruct direc-
tives.

Example 1
1
2 00000000 nom
3 00000004 den
4 00000008
5
6 00000000 0080016C—
-
8
9 00000000
10
Example 2
11

12 00000000 reali
13 00000008 imagi
14 00000010

18 00000008

19

20 00000004 0100046C—
21

22 00000008 0100036C—
23

24 0000000c 018C4A78

4-68

real_rec .struct ; stag
.int :memberl =0
.int ;member2 =1
real_len .endstruct ;real len=2

LDW *+Bl4(real+real_rec.den), Al
; access structure

.bss real, real_len ; allocate mem rec

cplx_rec .struct ; stag
.tag real_rec ; memberl =0
.tag real_rec ; member2 =2
cplx_len .endstruct ;cpix_len =4
complex .tag cplx_rec ; assign structure
; attribute

.bss complex, cplx_len ; allocate mem rec

LDW *+Bl4(complex.imagi.nom), A2
; access structure

LDW *+Bl4(complex.reali.den), A2
; access structure

CMPEQ A2, A3, A3

Declare Structure Type .Struct/.endstruct/.tag

Example 3
1 .struct ; No stag puts
2 ; mems into global
3 ; symbol table
4
5 00000000 X .byte ; create 3 dim
6 00000001 Y .byte ; templates
7 00000002 Z .byte
8 00000003 .endstruct
Example 4
1 bit_rec .struct ; stag
2 00000000 stream .string 64
3 00000040 bit7 .field 7 ; bit7 = 64
4 00000040 bit1 .field 9 ; bit9 = 64
5 00000042 bits5 .field 10 ; bits = 64
6 00000044 x_int .byte ; x_int =68
7 00000045 bit_len .endstruct ; length = 72
8
9 bits .tag bit_rec
10 00000000 .bss bits, bit_len
11
12 00000000 0100106C— LDW *+B14(bits.bit7), A2
13 ; load field
14 00000004 0109E7A0 AND OFh, A2, A2 ; mask off garbage

Assembler Directives 4-69

tab Define Tab Size

Syntax

Description

Example

4-70

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input
are translated to size character spaces in the listing. The default tab size is

eight spaces.

In this example, each of the lines of code following a .tab statement consists

of a single tab character followed by an NOP instruction.

Source file:

: default tab size
NOP
NOP
NOP

tab 4
NOP
NOP
NOP

.tab 16
NOP
NOP
NOP

Listing file:

1 ; default tab size

2 00000000 00000000
3 00000004 00000000
4 00000008 00000000
5

7 0000000c 00000000
8 00000010 00000000
9 00000014 00000000
10

12 00000018 00000000
13 0000001c 00000000
14 00000020 00000000

NOP
NOP
NOP
.tab4
NOP
NOP
NOP
.tab 16
NOP
NOP
NOP

Assemble Into .text Section .text

Syntax text
Description The .text directive tells the assembler to begin assembling into the .text
section, which usually contains executable code. The section program counter
is set to 0 if nothing has yet been assembled into the .text section. If code has
already been assembled into the .text section, the section program counter is
restored to its previous value in the section.
The .text section is the default section. Therefore, at the beginning of an
assembly, the assembler assembles code into the .text section unless you use
a .data or .sect directive to specify a different section.
For more information about COFF sections, see Chapter 2, Introduction to
Common Object File Format.
Example This example assembles code into the .text and .data sections.
1
2 ** Begin assembling into .data section. **
3 * * * * *k%
4 00000000 .data
5 00000000 00000005 .byte 5,6
00000001 00000006
6
7 *kkk *kkk *kkk
8 ** Begin assembling into .text section. **
9
10 00000000 text
11 00000000 00000001 .byte 1
12 00000001 00000002 .byte 2,3
00000002 00000003
13
14 Kk
15 ** Resume assembling into .data section.**
16 * * i
17 00000002 .data
18 00000002 00000007 .byte 7,8
00000003 00000008
19
20
21 ** Resume assembling into .text section.**
22

23 00000003

text

24 00000003 00000004 .byte 4

Assembler Directives 4-71

title Define Page Title

Syntax

Description

Example

title 7 string’

The .title directive supplies a title that is printed in the heading on each listing
page. The source statement itself is not printed, but the line counter is incre-
mented.

The string is a quote-enclosed title of up to 64 characters. If you supply more
than 64 characters, the assembler truncates the string and issues a warning:

** WARNING! line x: W0001: String is too long — will be truncated

The assembler prints the title on the page that follows the directive and on
subsequent pages until another .title directive is processed. If you want a title
on the first page, the first source statement must contain a .title directive.

Inthis example, onetitle is printed on the first page and a differenttitle is printed
on succeeding pages.

Source file:

title "**** Fast Fourier Transforms **** "

title "**** Floating—Point Routines ****”
.page

Listing file:

TMS320C6x COFF Assembler Version x.xx Tue Apr 14 17:18:21 1997
Copyright (c) 1996-1997 Texas Instruments Incorporated
**+% Fast Fourier Transforms **+* PAGE 1

2 ;
3 ;

4 ; .
TMS320C6x COFF Assembler Version x.xx Tue Apr 14 17:18:21 1997
Copyright (c) 1996-1997 Texas Instruments Incorporated
+* Floating—Point Routines ** PAGE 2

No Errors, No Warnings

4-72

Syntax

Description

Reserve Uninitialized Space .Usect

symbol .usect " section name”, size in bytes [, alignment]

The .usect directive reserves space for variables in an uninitialized, named
section. This directive is similar to the .bss directive; both simply reserve space
for data and that space has no contents. However, .usect defines additional
sections that can be placed anywhere in memory, independently of the .bss
section.

(1 The symbol points to the first location reserved by this invocation of the
.usect directive. The symbol corresponds to the name of the variable for
which you are reserving space.

[The section name is significant to 200 characters and must be enclosed
in double quotes. This parameter names the uninitialized section. A
section name can contain a subsection name in the form section
name:subsection name.

[The size in bytes is an expression that defines the number of bytes that
are reserved in section name.

[The alignmentis an optional parameter that ensures that the space allo-
cated to the symbol occurs on the specified boundary. This boundary indi-
cates the size of the slot in bytes and can be set to any power of 2.

Initialized sections directives (.text, .data, and .sect) end the current section
and tell the assembler to begin assembling into another section. A .usect or
.bss directive encountered in the current section is simply assembled, and
assembly continues in the current section.

Variables that can be located contiguously in memory can be defined in the
same specified section; to do so, repeat the .usect directive with the same
section name and the subsequent symbol (variable name).

For more information about COFF sections, see Chapter 2, Introduction to
Common Object File Format.

Assembler Directives 4-73

.usect Reserve Uninitialized Space

Example This example uses the .usect directive to define two uninitialized, named
sections, varl and var2. The symbol ptr points to the first byte reserved in the
varl section. The symbol array points to the first byte in a block of 100 bytes
reserved in varl, and dflag points to the first byte in a block of 50 bytes in varl.
The symbol vec points to the first byte reserved in the var2 section.

Figure 4-8 shows how this example reserves space in two uninitialized
sections, varl and var2.

1 *k%k * *
2 ** Assemble into .text section *x

3 * * * *k*k *k*k

4 00000000 text

5 00000000 008001A0 MV AO0,Al

6

7 * * *kk * *kk * *k%k *

8 ** Reserve 2 bytes in varl. i

9 *kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkxk

10 00000000 ptr .usect "varl”,2

11 00000004 0100004C— LDH *+B14(ptr),A2 ;stillin .text
12

13

14 ** Reserve 100 bytes in varl *x

15 * *

16 00000002 array .usect "varl”, 100

17 00000008 01800128— MVK array,A3 ; still in .text
18 0000000c 01800068— MVKH array,A3

19

21 ** Reserve 50 bytes in varl **

22 wx kA wx kK

23 00000066 dflag .usect "varl”,50

24 00000010 02003328— MVK dflag,A4

25 00000014 02000068— MVKH dflag,A4

26

27 Kkkkk * *

28 ** Reserve 100 bytes in varl *x

29 * * *

30 00000000 vec .usect "var2”,100

31 00000018 0000002A— MVK vec,BO ; still in .text
32 0000001c 0000006A— MVKH vec,BO

4-74

Figure 4-8. The .usect Directive

ptr ——»

array —p

dflag —»

section varl

2 bytes

100 bytes

50 bytes

Reserve Uninitialized Space

vec —p

section var2

100 bytes

.usect

100 bytes reserved in var2

152 bytes reserved in varl

Assembler Directives

4-75

Chapter 5

Macro Language

The assembler supports a macro language that enables you to create your
own instructions. This is especially useful when a program executes a partic-
ular task several times. The macro language lets you:

Define your own macros and redefine existing macros
Simplify long or complicated assembly code

Access macro libraries created with the archiver

Define conditional and repeatable blocks within a macro
Manipulate strings within a macro

Control expansion listing

Loodood

Topic Page
5.1 USING MACIOS ...ttt et e e e 5-2 |
5.2 DefiningMacros
5.3 Macro Parameters/Substitution Symbols 5:

5.4 Macro LIDranesoiiiiii 5H13 |
5.5 Using Conditional Assembly in Macros ~ 5-.1E|
5.6 Using Labels in MaCroSoouuiuineinieiiaeann., 5
5.7 Producing Messages in MacroS —c.ouiuiuinenen.. 5-17 |
5.8 Using Directives to Format the Output Listing 5.-1¢:|
5.9 Using Recursive and Nested Macros —! 5-
5.10 Macro Directives SUMmary oouniiineinnanannnan. 5

Using Macros

5.1 Using Macros

Programs often contain routines that are executed several times. Instead of
repeating the source statements for a routine, you can define the routine as
a macro, then call the macro in the places where you would normally repeat
the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you
can assign parameters within a macro. This enables you to pass different
information to the macro each time you call it. The macro language supports
a special symbol called a substitution symbol, whichis used for macro parame-
ters. See Section 5.3, Macro Parameters/Substitution Symbols, page 5-5, for
more information.

Using a macro is a 3-step process.

Step 1. Definethemacro. You mustdefine macros before you can use them
in your program. There are two methods for defining macros:

(1 Macros can be defined at the beginning of a source file or in an
copylinclude file. See Section 5.2, Defining Macros, for more
information.

[J Macros can also be defined in a macro library. A macro library
is a collection of files in archive format created by the archiver.
Each member of the archive file (macro library) may contain one
macro definition corresponding to the member name. You can
access a macro library by using the .mlib directive. For more
information, see Section 5.4, Macro Libraries, page 5-13.

Step 2: Callthe macro. After you have defined a macro, call it by using the
macro name as a mnemonic in the source program. This is referred
to as a macro call.

Step 3: Expandthe macro. The assembler expands your macros when the
source program calls them. During expansion, the assembler
passes arguments by variable to the macro parameters, replaces
the macro call statement with the macro definition, then assembles
the source code. By default, the macro expansions are printed in the
listing file. You can turn off expansion listing by using the .mnolist
directive. For more information, see Section 5.8, Using Directives to
Format the Output Listing, page 5-19.

When the assembler encounters a macro definition, it places the macro name
inthe opcode table. This redefines any previously defined macro, library entry,
directive, or instruction mnemonic that has the same name as the macro. This
allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

5.2 Defining Macros

You can define a macro anywhere in your program, but you must define the
macro before you can use it. Macros can be defined at the beginning of a
source file orin a .copy/.include file (see page 4-27); they can also be defined
in a macro library. For more information, see Section 5.4, Macro Libraries,
page 5-13.

Macro definitions can be nested, and they can call other macros, but all
elements of the macro must be defined in the same file. Nested macros are
discussed in Section 5.9, Using Recursive and Nested Macros, page 5-21.

A macro definition is a series of source statements in the following format:

macname .macro [parameter;] [, ... , parametery,]
model statements or macro directives
[.mexit]

.endm

macname names the macro. You must place the name in the
source statement’s label field. Only the first 128 charac-
ters of a macro name are significant. The assembler
places the macro name in the internal opcode table,
replacing any instruction or previous macro definition
with the same name.

.macro is the directive that identifies the source statement as
the first line of a macro definition. You must place
.macro in the opcode field.

parametery, are optional substitution symbols that appear as oper-

parameter, ands for the .macro directive. Parameters are dis-
cussed in Section 5.3, Macro Parameters/Substitution
Symbols, page 5-5.

model statements are instructions or assembler directives that are exe-
cuted each time the macro is called.

macro directives are used to control macro expansion.

.mexit is a directive that functions as a goto .endm. The .mexit
directive is useful when error testing confirms that
macro expansion fails and completing the rest of the
macro is unnecessatry.

.endm is the directive that terminates the macro definition.

Macro Language 5-3

Defining Macros

Example 5-1 shows the definition, call, and expansion of a macro.

Example 5—-1. Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, sadd4, with four parameters:

sadd4 .macro rl,r2,r3,r4
!
| sadd4 r1,r2 ,r3,r4
I'rl=rl+r2+r3+r4 (saturated)
!

SADD rl1,r2,r1

SADD rl1,r3,r1

SADD rl,r4,r1

.endm

©Coo~NOUWNE

Macro call: The following code calls the sadd4 macro with four arguments:

10
11 00000000 sadd4 AO0,A1,A2,A3

Macro expansion: The following code shows the substitution of the macro definition for the macro
call. The assembler substitutes A0, Al, A2, and A3 for the r1, r2, r3, and r4 parameters of sadd4.

1 00000000 00040278 SADD AO0,A1,A0
1 00000004 00080278 SADD AO0,A2,A0
1 00000008 000C0278 SADD AO0,A3,A0

If you want to include comments with your macro definition but do not want
those comments to appear in the macro expansion, use an exclamation point
to precede your comments. If you do want your comments to appear in the
macro expansion, use an asterisk or semicolon. See Section 5.7, Producing
Messages in Macros, page 5-17, for more information about macro
comments.

Macro Parameters/Substitution Symbols

5.3 Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can
assign parameters within the macro. The macro language supports a special
symbol, called a substitution symbol, which is used for macro parameters.

Macro parameters are substitution symbols that represent a character string.
These symbols can also be used outside of macros to equate a character
string to a symbol name (see section 3.8.6, Substitution Symbols, page 3-22).

Valid substitution symbols can be up to 128 characters long and must begin
with a letter. The remainder of the symbol can be a combination of alpha-
numeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they
are defined in. You can define up to 32 local substitution symbols (including
substitution symbols defined with the .var directive) per macro. For more
information about the .var directive, see section 5.3.6, Substitution Symbols
as Local Variables in Macros, page 5-12.

During macro expansion, the assembler passes arguments by variable to the
macro parameters. The character-string equivalent of each argument is
assigned to the corresponding parameter. Parameters without corresponding
arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string
equivalent of all remaining arguments.

If you pass a list of arguments to one parameter or if you pass a comma or
semicolon to a parameter, you must surround these terms with quotation
marks.

At assembly time, the assembler replaces the macro parameter/substitution
symbol with its corresponding character string, then translates the source
code into object code.

Example 5-2 shows the expansion of a macro with varying numbers of argu-
ments.

Macro Language 5-5

Macro Parameters/Substitution Symbols

Example 5-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:

Parms .macro a,b,c

; a=:a

; b =:b:

: c=:c:
.endm

Calling the macro:

Parms 100,label Parms 100,label,x,y
: a=100 ;. a=100
; b = label ;b =label
; c="" ;o C=XY
Parms 100, , x Parms "100,200,300",x,y
; a=100 ; a=100,200,300
; b="" ; b=x
; c=X Y

Parms ™ string™” X,y
; a = "string”
; b=x
: c=y

5.3.1 Directives That Define Substitution Symbols
You can manipulate substitution symbols with the .asg and .eval directives.

[The .asg directive assigns a character string to a substitution symbol.

The syntax of the .asg directive is:

.asg ["]character string["], substitution symbol

The quotation marks are optional. If there are no quotation marks, the
assembler reads characters up to the first comma and removes leading
and trailing blanks. In either case, a character string is read and assigned
to the substitution symbol.

Example 5-3 shows character strings being assigned to substitution symbols.

Example 5-3. The .asg Directive

.asg "A4”, RETVAL ; return value
.asg "Bl4”", PAGEPTR ; global page pointer
.asg "Version 1.0™", version

.asg "pl, p2, p3”, list

Macro Parameters/Substitution Symbols

[J The .eval directive performs arithmetic on numeric substitution symbols.

The syntax of the .eval directive is:

.eval well-defined expresssion, substitution symbol

The .eval directive evaluates the expression and assigns the string value
of the result to the substitution symbol. If the expression is not well defined,
the assembler generates an error and assigns the null string to the symbol.

Example 5—-4 shows arithmetic being performed on substitution symbols.

Example 5—4. The .eval Directive

.asg 1,counter

loop 100

.word counter

.eval counter + 1,counter
.endloop

In Example 5-4, the .asg directive could be replaced with the .eval directive
(-eval 1, counter) without changing the output. In simple cases like this, you
can use .eval and .asg interchangeably. However, you must use .eval if you
want to calculate a value from an expression. While .asg only assigns a char-
acter string to a substitution symbol, .eval evaluates an expression and then
assigns the character string equivalent to a substitution symbol.

For more information about the .asg and eval assembler directives, see page
4-22.

5.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make deci-
sions on the basis of the string value of substitution symbols. These functions
always return a value, and they can be used in expressions. Built-in substitu-
tion symbol functions are especially useful in conditional assembly expres-
sions. Parameters of these functions are substitution symbols or character-
string constants.

In the function definitions shown in Table 5-1, aand b are parameters that rep-
resent substitution symbols or character-string constants. The term string
refers to the string value of the parameter. The symbol ch represents a char-
acter constant.

Macro Language 5-7

Macro Parameters/Substitution Symbols

Table 5-1. Substitution Symbol Functions and Return Values

Function Return Value

$symlen (a) Length of string a

$symcmp (a,b) < QOifa < b;0ifa = b;> 0ifa> b

$firstch (a,ch) Index of the first occurrence of character constant ch in string a
$lastch (a,ch) Index of the last occurrence of character constant ch in string a
$isdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$ismember (a,b) Top member of list b is assigned to string a
0if bis a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

Sisreg (a)t 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

T For more information about predefined register names, see section 3.8.5, Predefined Symbolic
Constants, on page 3-21.

Example 5-5 shows built-in substitution symbol functions.

Example 5-5. Using Built-In Substitution Symbol Functions

5-8

pushx .macro list
|

I Push more than one item
I $ismember removes the first item in the list

.var item

.loop

.break ($ismember(item, list) = 0)
STW item,*B15—{1]
.endloop

.endm

pushx AO0,A1,A2,A3

Macro Parameters/Substitution Symbols

5.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substi-
tute the corresponding character string. If that string is also a substitution
symbol, the assembler performs substitution again. The assembler continues
doing this until it encounters a token that is not a substitution symbol or until
it encounters a substitution symbol that it has already encountered during this
evaluation.

In Example 5-6, the x is substituted for z; z is substituted for y; and y is substi-
tuted for x. The assembler recognizes this as infinite recursion and ceases
substitution.

Example 5—6. Recursive Substitution

.asg "X",z ; declare z and assign z = "X"
.asg "z"y ;declareyand assigny ="z"
.asg "y"x ; declare x and assign x ="y”
MVK x, Al

MVKH x, Al

* MVK x,Al ; recursive expansion
* MVKH x,Al ; recursive expansion

5.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler.
The forced substitution operator, which is a set of colons surrounding the
symbol, enables you to force the substitution of a symbol’s character string.
Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol.

The syntax for the forced substitution operator is:

.symbol:

The assembler expands substitution symbols surrounded by colons before
expanding other substitution symbols.

You can use the forced substitution operator only inside macros, and you
cannot nest a forced substitution operator within another forced substitution
operator.

Example 5—-7 shows how the forced substitution operator is used.

Macro Language 5-9

Macro Parameters/Substitution Symbols

Example 5—7. Using the Forced Substitution Operator

force .macro x
loop 8
PORT:x: .set x*4
.eval x+1, x

.endloop
.endm

.global portbase
force 0

This generates the following source code:

PORTO .set O
PORT1 .set 4

PORT7 .set 28

5.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

5-10

Inamacro, you can access the individual characters (substrings) of a substitu-
tion symbol with subscripted substitution symbols. You must use the forced
substitution operator for clarity.

You can access substrings in two ways:

(1 :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one
character.

(1 :symbol (well-defined expressiony, well-defined expression,):

In this method, expressionq represents the substring’s starting position,
and expression, represents the substring’s length. You can specify
exactly where to begin subscripting and the exact length of the resulting
character string. The index of substring characters begins with 1, not 0.

Example 5-8 and Example 5-9 show built-in substitution symbol functions
used with subscripted substitution symbols.

Macro Parameters/Substitution Symbols

Example 5-8. Using Subscripted Substitution Symbols to Redefine an Instruction

storex .macro X
var tmp
.asg X(1):, tmp
Jif $symemp(tmp,”A”) ==
STW X,*A15—(4)
.elseif $symcmp(tmp,”’B”) == 0
STW X,*A15—(4)
.elseif $iscons(x)
MVK x,A0
STW AO0,*A15—(4)
.else
.emsg "Bad Macro Parameter”
.endif
.endm
storex 10h
storex Al5

In Example 5-8, subscripted substitution symbols redefine the STW instruc-
tion so that it handles immediate.

Example 5-9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strg1,strg2,pos
.var lenl,len2,i,tmp
if $symlen(start) = 0
.eval 1,start
.endif
.eval 0,pos
.eval start,i
.eval $symlen(strgl),lenl
.eval $symlen(strg2),len2
.loop
.break i=(len2 —lenl + 1)
.asg ":strg2(i,lenl):",tmp
if $symemp(strgl,tmp) =0
.eval i,pos
.break
.else
.eval i+ 1,
.endif
.endloop
.endm
.asg 0,pos
.asg "arl ar2 ar3 ar4”,regs
substr 1,”ar2”,regs,pos
.word pos

In Example 5-9, the subscripted substitution symbol is used to find a substring
strg1 beginning at position start in the string strg2. The position of the substring
strgl is assigned to the substitution symbol pos.

Macro Language 5-11

Macro Parameters/Substitution Symbols

5.3.6 Substitution Symbols as Local Variables in Macros

5-12

If you want to use substitution symbols as local variables within a macro, you
can use the .var directive to define up to 32 local macro substitution symbols
(including parameters) per macro. The .var directive creates temporary substi-
tution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

var symp [,symo, ... ,Symp]

The .var directive is used in Example 5-8 and Example 5-9, page 5-11.

Macro Libraries

5.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a
collection of files that contain macro definitions. You must use the archiver to
collect these files, or members, into a single file (called an archive). Each
member of a macro library contains one macro definition. The files in a macro
library must be unassembled source files. The macro name and the member
name must be the same, and the macro filename’s extension must be .asm.

For example:
Macro Filename in Macro
Name Library
simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive
(described on page 4-54). The syntax is:

.mlib filename

When the assembler encounters the .mlib directive, it opens the library named
by filename and creates a table of the library’s contents. The assembler enters
the names of the individual members within the library into the opcode tables
as library entries; this redefines any existing opcodes or macros that have the
same name. If one of these macros is called, the assembler extracts the entry
from the library and loads it into the macro table.

The assembler expands the library entry in the same way it expands other
macros. (See Section 5.1, Using Macros, on page 5-2, for how the assembler
expands macros.) You can control the listing of library entry expansions with
the .mlist directive. For more information about the .mlist directive, see Section
5.8, Using Directives to Format the Output Listing, page 5-19 and the .mlist
description on page 4-56. Only macros that are actually called from the library
are extracted, and they are extracted only once.

You can use the archiver to create a macro library by including the desired files
in an archive. A macro library is no different from any other archive, except that
the assembler expects the macro library to contain macro definitions. The
assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable
results. For information about creating a macro library archive, see Chapter 6,
Archiver Description.

Macro Language 5-13

Using Conditional Assembly in Macros

5.5 Using Conditional Assembly in Macros

5-14

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/
.break/.endloop . They can be nested within each other up to 32 levels deep.
The format of a conditional block is:

.if well-defined expression
[.elseif well-defined expression]
[-else]

.endif

The .elseif and .else directives are optional in conditional assembly. The
.elseif directive can be used more than once within a conditional assembly
code block. When .elseif and .else are omitted and when the .if expression is
false (0), the assembler continues to the code following the .endif directive. For
more information on the .if/ .elseif/.else/.endif directives, see page 4-44.

The .loop/.break/.endloop directives enable you to assemble a code block
repeatedly. The format of a repeatable block is:

.loop [well-defined expression]
[.break [well-defined expression]]
.endloop

The .loop directive’s optional well-defined expression evaluates to the loop
count (the number of loops to be performed). If the expression is omitted, the
loop count defaults to 1024 unless the assembler encounters a .break direc-
tive with an expression that is true (nonzero). For more information on the
.loop/.break/ .endloop directives, see page 4-52.

The .break directive and its expression are optional in repetitive assembly. If
the expression evaluates to false, the loop continues. The assembler breaks
the loop when the .break expression evaluates to true or when the .break
expression is omitted. When the loop is broken, the assembler continues with
the code after the .endloop directive.

Example 5-10, Example 5-11, and Example 5-12 show the .loop/.break/
.endloop directives, properly nested conditional assembly directives, and
built-in substitution symbol functions used in a conditional assembly code
block.

Using Conditional Assembly in Macros

Example 5-10. The .loop/.break/.endloop Directives

.asg 1,x
Jloop

.break (x==10) ; if x==10, quit loop/break with
expression

.eval x+1,x
.endloop

Example 5-11. Nested Conditional Assembly Directives

.asg 1x

loop

If (x == 10) ; if x ==10 quit loop
.break ;. force break
.endif

.eval x+1,x

.endloop

Example 5-12. Built-In Substitution Symbol Functions in a Conditional Assembly

Code Block
MACKS3 .macro srcl, src2, sum, k
!
I dst=dst+k*(srcl*src2)

if k=0
MPY srcl, src2, src2
NOP
ADD src2, sum, sum
.else
MPY srcl,src2,src2
MVK k,srcl
MPY srcl,src2,src2
NOP
ADD src2,sum,sum
.endif
.endm
MACK3 AO0,A1,A3,0
MACK3 AO0,A1,A3,100

For more information, see Section 4.7, Directives That Enable Conditional
Assembly, on page 4-16.

Macro Language 5-15

Using Labels in Macros

5.6 Using Labels in Macros

All labels in an assembly language program must be unique. This includes
labels in macros. If a macro is expanded more than once, its labels are defined
more than once. Defining a label more than once is illegal. The macro lan-
guage provides a method of defining labels in macros so that the labels are
unique. Simply follow each label with a question mark, and the assembler
replaces the question mark with a period followed by a unique number. When
the macro is expanded, you do not see the unique number in the listing file.
Your label appears with the question mark as it did in the macro definition. You
cannot declare this label as global. The syntax for a unique label is:

label?

Example 5-13 shows unique label generation in a macro.

Example 5-13. Unique Labels in a Macro

5-16

1 min .macro x,y,z

2

3 MV y,z

4 [CMPLT xyy

5 [yI B [?

6 NOP 5

7 MV X,z

8 I?

9 .endm

10

11

12 00000000 MIN AO0,A1,A2
1
1 00000000 010401A1 MV AlA2
1 00000004 00840AF8 || CMPLT AO0,A1,A1
1 00000008 80000292 [Al] B I?
1 0000000c 00008000 NOP 5
1 00000010 010001A0 MV AO0,A2
1 00000014 I?
LABEL VALUE DEFN REF
.TMS320C60 00000001 0
.tms320C60 00000001 0
1$1$ 00000014 12 12

The maximum label length is shortened to allow for the unique suffix. For
example, if the macro is expanded fewer than 10 times, the maximum label
length is 126 characters. If the macro is expanded from 10 to 99 times, the
maximum label length is 125. The label with its unique suffix is shown in the
cross-listing file. To obtain a cross-listing file, invoke the assembler with the —x
option (see page 3-5).

Producing Messages in Macros

5.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your
own assembly-time error and warning messages. These directives are espe-
cially useful when you want to create messages specific to your needs. The
last line of the listing file shows the error and warning counts. These counts
alert you to problems in your code and are especially useful during debugging.

.emsg

.mmsg

.wmsg

sends error messages to the listing file. The .emsg directive
generates errors in the same manner as the assembler, incre-
menting the error count and preventing the assembler from pro-
ducing an object file.

sends assembly-time messages to the listing file. The .mmsg
directive functions in the same manner as the .emsg directive
but does not set the error count or prevent the creation of an
object file.

sends warning messages to the listing file. The .wmsg directive
functions in the same manner as the .emsg directive, butitincre-
ments the warning count and does not prevent the generation
of an object file.

Macro comments are comments that appear in the definition of the macro but
do not show up in the expansion of the macro. An exclamation point in col-
umn 1 identifies a macro comment. If you want your comments to appear in
the macro expansion, precede your comment with an asterisk or semicolon.

Example 5-14 shows user messages in macros and macro comments that do
not appear in the macro expansion.

Macro Language 5-17

Producing Messages in Macros

Example 5—-14. Producing Messages in a Macro

TEST .macro X,y
!
! This macro checks for the correct number of parameters.
! It generates an error message if x and y are not present.
!
! The first line tests for proper input.
!
df o ($symlen(x) + [|$symlen(y) == 0)
.emsg "ERROR —missing parameter in call to TEST”
.mexit
.else

endif
if

endif
.endm

For more information about the .emsg, .mmsg, and .wmsg assembler direc-
tives, see page 4-33.

5-18

Using Directives to Format the Output Listing

5.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide
information. You may need to see this hidden information, so the macro lan-
guage supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional
blocks in the list output file. You may want to turn this listing off or on within your
listing file. Four sets of directives enable you to control the listing of this

information:

[J Macro and loop expansion listing

.mlist

.mnolist

expands macros and .loop/.endloop blocks. The .mlist direc-
tive prints all code encountered in those blocks.

suppresses the listing of macro expansions and .loop/
.endloop blocks.

For macro and loop expansion listing, .mlist is the default.

[J False conditional block listing

fclist

fcnolist

causesthe assembler to include in the listing file all conditional
blocks that do not generate code (false conditional blocks).
Conditional blocks appear in the listing exactly as they appear
in the source code.

suppresses the listing of false conditional blocks. Only the
code in conditional blocks that actually assemble appears in
the listing. The .if, .elseif, .else, and .endif directives do not
appear in the listing.

For false conditional block listing, .fclist is the default.

[J Substitution symbol expansion listing

.sslist

.ssnolist

expands substitution symbols in the listing. This is useful for
debugging the expansion of substitution symbols. The expan-
ded line appears below the actual source line.

turns off substitution symbol expansion in the listing.

For substitution symbol expansion listing, .ssnolist is the default.

Macro Language 5-19

Using Directives to Format the Output Listing

[Directive listing
.drlist causes the assembler to print to the listing file all directive
lines.

.drnolist suppresses the printing of certain directives in the listing file.
These directives are .asg, .eval, .var, .sslist, .mlist, .fclist,
.ssnolist, .mnolist, .fcnolist, .emsg, .wmsg, .mmsg, .length,
.width, and .break.

For directive listing, .drlist is the default.

5-20

Using Recursive and Nested Macros

5.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means
that you can call other macros in a macro definition. You can nest macros up
to 32 levels deep. When you use recursive macros, you call a macro from its
own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention
to the arguments that you pass to macro parameters because the assembler
uses dynamic scoping for parameters. This means that the called macro uses
the environment of the macro from which it was called.

Example 5-15 shows nested macros. The y in the in_block macro hides the
y in the out_block macro. The x and z from the out_block macro, however, are
accessible to the in_block macro.

Example 5-15. Using Nested Macros

in_block .macro y,a
. ; visible parameters are y,a and

. ; X,z from the calling macro

.endm

out_block .macro x,y,z
. ; visible parameters are x,y,z

in_block x,y ; macro call with x and y as

arguments

.endm
out_block : macro call

Example 5-16 shows recursive macros. The fact macro produces assembly
code necessary to calculate the factorial of n, where n is an immediate value.
The result is placed in the Al register. The fact macro accomplishes this by
calling factl, which calls itself recursively.

Macro Language 5-21

Using Recursive and Nested Macros

Example 5-16. Using Recursive Macros

fact

.fcnolist

factl .macron

ifn==

MVK globcnt, A1 ; Leave the answer in the Al register.
.else

.eval n—1, temp ; Compute the decrement of symbol n.

.eval globcnt*temp, globcnt ; Multiply to get a new result.
factl temp ; Recursive call.

.endif
.endm

.macro n

if I $iscons(n) ; Test that input is a constant.
.emsg "Parm not a constant”

.elseifn< 1 ; Type check input.
MVK 0, A1

.else
.var temp
.asg n, globent

factl n ; Perform recursive procedure

.endif
.endm

5-22

5.10 Macro Directives Summary

Macro Directives Summary

The following directives can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are
general assembly language directives.

Table 5-2. Creating Macros

See Page
Macro Directive
Mnemonic and Syntax Description Use Description
.endm End macro definition 5-3 5-3
macname .macro . [parameter] [, ..., Define macro by macname 5-3 5-3
parametery]
.mexit Go to .endm 5-3 5-3
miib filename Ejotenltify library containing macro defini- 5-13 4-54
Table 5-3. Manipulating Substitution Symbols
See Page
Macro Directive
Mnemonic and Syntax Description Use Description
.asqg [“]character string["], substitution Assign character string to substitution 5.6 4-22
symbol symbol
.eval well-defined expression, substitution E’erform arithmetic on numeric substitu- 5.7 4-22
symbol tion symbols
var symy [,Ssymo, ... ,symp] Define local macro symbols 5-12 5-12
Table 5-4. Conditional Assembly
See Page
Macro Directive
Mnemonic and Syntax Description Use Description
.break [well-defined expression] Optional repeatable block assembly 5-14 4-52
.endif End conditional assembly 5-14 4-44
.endloop End repeatable block assembly 5-14 4-52
.else Optional conditional assembly block 5-14 4-44
.elseif well-defined expression Optional conditional assembly block 5-14 4-44
if well-defined expression Begin conditional assembly 5-14 4-44
loop [well-defined expression] Begin repeatable block assembly 5-14 4-52

Macro Language

5-23

Macro Directives Summary

Table 5-5. Producing Assembly-Time Messages

See Page
Macro Directive
Mnemonic and Syntax Description Use Description
.emsg Send error message to standard output 5-17 4-33
.mmsg Send assembly-time message to standard output 5-17 4-33
.wmsg Send warning message to standard output 5-17 4-33

Table 5-6. Formatting the Listing

See Page
Macro Directive
Mnemonic and Syntax Description Use Description
fclist Allow false conditional code block listing (default) 5-19 4-36
fcnolist Suppress false conditional code block listing 5-19 4-36
.mlist Allow macro listings (default) 5-19 4-56
.mnolist Suppress macro listings 5-19 4-56
.sslist Allow expanded substitution symbol listing 5-19 4-64
.ssnolist Suppress expanded substitution symbol listing (default) 5-19 4-64

5-24

Chapter 6

Archiver Description

The TMS320C6x archiver lets you combine several individual files into a single
archive file. For example, you can collect several macros into a macro library.
The assembler searches the library and uses the members that are called as
macros by the source file. You can also use the archiver to collect a group of
objectfiles into an object library. The linker includes in the library the members
that resolve external references during the link. The archiver allows you to
modify a library by deleting, replacing, extracting, or adding members.

Topic Page
6.1 AICHIVEr OVEIVIEW ...\ttt ettt e 6l2]
6.2 The Archiver’s Role in the Software Development Flow — 6-3 I:l
6.3 Invoking the Archiver 6—E|
@BA /NEUVET BEWES 506066006000600000060066006000605000060000¢ 6l6]

Archiver Overview

6.1 Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker
accept archive libraries as input; the assembler can use libraries that contain
individual source files, and the linker can use libraries that contain individual
object files.

One of the most useful applications of the archiver is building libraries of object
modules. For example, you can write several arithmetic routines, assemble
them, and use the archiver to collect the object files into a single, logical group.
You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several
source files, each of which contains a single macro, and use the archiver to
collect these macros into a single, functional group. You can use the .mlib
directive during assembly to specify that macro library to be searched for the
macros that you call. Chapter 5, Macro Language, discusses macros and
macro libraries in detail, while this chapter explains how to use the archiver to
build libraries.

The Archiver’s Role in the Software Development Flow

6.2 The Archiver’s Role in the Software Development Flow

Figure 6—1 shows the archiver’s role in the software development process.
The shaded portion highlights the most common archiver development path.
Both the assembler and the linker accept libraries as input.

Figure 6-1. The Archiver in the TMS320C6x Software Development Flow

. C .
. source
. files .
« Macro e []
SemmSONIC . Assembly o
S L C compiler . optimizer
\ y * source ¢
Archiver . Assembler « Assembly
%J . source | optimizer
. Macro . v = =
v library :Assfembhé':
* * Assembler - optimized .
: file :
. COFF - Library-build
Archiver e Object o utility
: files : %J
II— . .
. 5 v e Runtime- -«
¢ Library of 2 — e support e
- object - > : « library ¢
. - . Linker
. files .
. Executable «
. COFF .
. . file M
Hex conversion
utility
v
EPROM Cross-'reference TMS320C6x
programmer lister

| i

Archiver Description 6-3

Invoking the Archiver

6.3

Invoking the Archiver

To invoke the archiver, enter:

aréx [-Jcommand [options] libname [filenamey ... filenamep]

aréx

[-lcommand

is the command that invokes the archiver.

tells the archiver how to manipulate the existing library mem-
bers and any specified filenames. A command can be pre-
ceded by an optional hyphen. You must use one of the follow-
ing commands when you invoke the archiver, but you can use
only one command per invocation. The archiver commands
are as follows:

@

uses the contents of the specified file instead of com-
mand line entries. You can use this command to avoid
limitations on command line length imposed by the host
operating system. Use a ; at the beginning of a line in
the command file to include comments. (See page 6-7
for an example using an archiver command file.)

adds the specified files to the library. This command
does not replace an existing member that has the same
name as an added file; it simply appends new members
to the end of the archive.

deletes the specified members from the library.

replaces the specified members in the library. If you do
not specify filenames, the archiver replaces the library
members with files of the same name in the current
directory. If the specified file is not found in the library,
the archiver adds it instead of replacing it.

prints atable of contents of the library. If you specify file-
names, only those files are listed. If you do not specify
any filenames, the archiver lists all the members in the
specified library.

extracts the specified files. If you do not specify
member names, the archiver extracts all library
members. When the archiver extracts a member, it sim-
ply copies the member into the current directory; it does
not remove it from the library.

Invoking the Archiver

options In addition to one of the commands, you can specify options.
To use options, combine them with a command; for example,
to use the a command and the s option, enter —as or as. The
hyphen is optional for archiver options only. These are the
archiver options:

—g (quiet) suppresses the banner and status messages.

—s prints a list of the global symbols that are defined in the
library. (This option is valid only with the a, r, and d com-
mands.)

—u replaces library members only if the replacement has
a more recent modification date. You must use the r
command with the —u option to specify which members
to replace.

—-v (verbose) provides a file-by-file description of the crea-
tion of a new library from an old library and its members.

libname names the archive library to be built or modified. If you do not
specify an extension for libname, the archiver uses the
default extension ./ib.

filenames names individual files to be manipulated. These files can be
existing library members or new files to be added to the
library. When you enter a filename, you must enter a
complete filename including extension, if applicable. A file-
name can be up to 15 characters in length; the archiver trun-
cates filenames that are longer than 15 characters.

Note: Naming Library Members

Itis possible (but not desirable) for a library to contain several members with
the same name. If you attempt to delete, replace, or extract a member whose
name is the same as another library member, the archiver deletes, replaces,
or extracts the first library member with that name.

Archiver Description 6-5

Archiver Examples

6.4 Archiver Examples
The following are examples of typical archiver operations:
(1 If you want to create a library called function.lib that contains the files
sine.obj, cos.obj, and flt.obj, enter:
aréx —a function sine.obj cos.obj flt.obj
The archiver responds as follows:

TMS320C6x Archiver Version x.xx

Copyright (c) 1996-1997 Texas Instruments Incorporated
==> new archive 'function.lib’
==> building archive "function.lib’

[Youcan print atable of contents of function.lib with the —t command, enter:
aréx —t function

The archiver responds as follows:

TMS320C6x Archiver Version X.xx
Copyright (c) 1996-1997 Texas Instruments Incorporated

FILE NAME SIZE DATE

sine.obj 300 Wed Apr 16 10:00:24 1997
cos.obj 300 Wed Apr 16 10:00:30 1997
flt.obj 300 Wed Apr 16 09:59:56 1997

[If you want to add new members to the library, enter:
aréx —as function atan.obj
The archiver responds as follows:

TMS320C6x Archiver Version X.xx
Copyright (c) 1996-1997 Texas Instruments Incorporated

==> symbol defined: ’_sin’

==> symbol defined: '$sin’

==> symbol defined: ’_cos’

==> symbol defined: '$cos’

==> symbol defined: ’_tan’

==> symbol defined: '$tan’

==> symbol defined: '_atan

==> symbol defined: '$atan’

==> puilding archive "function.lib’

Because this example does not specify an extension for the libname, the
archiver adds the files to the library called function.lib. If function.lib does

not exist, the archiver creates it. (The —s option tells the archiver to list the
global symbols that are defined in the library.)

a

Archiver Examples

If you want to modify a library member, you can extract it, edit it, and
replace it. In this example, assume there is a library named macros.lib that
contains the members push.asm, pop.asm, and swap.asm.

aréx —x macros push.asm

The archiver makes a copy of push.asm and places it in the current direc-
tory; it does not remove push.asm from the library. Now you can edit the
extracted file. To replace the copy of push.asm in the library with the edited
copy, enter:

aréx —r macros push.asm

If you want to use a command file, specify the command filename after the
@ command. For example:

aréx @modules.cmd
The archiver responds as follows:

TMS320C6x Archiver Version x.xx
Copyright (c) 1996-1997 Texas Instruments Incorporated
==> bhuilding archive 'modules.lib’

This is the modules.cmmd command file:

; Command file to replace members of the
; modules library with updated files

; Use r command and u option:

ru

; Specify library name:

modules.lib

; List filenames to be replaced if updated:
align.asm

bss.asm

data.asm

text.asm

sect.asm

clink.asm

copy.asm

double.asm

drnolist.asm

emsg.asm

end.asm

The r command specifies that the filenames given in the command file
replace files of the same name in the modules.lib library. The —u option
specifies that these files are replaced only when the current file has amore
recent revision date than the file that is in the library.

Archiver Description 6-7

Chapter 7

Linker Description

The TMS320C6x linker creates executable modules by combining COFF
object files. This chapter describes the linker options, directives, and state-
ments used to create executable modules. Object libraries, command files,
and other key concepts are discussed as well.

The concept of COFF sections is basic to linker operation; Chapter 2,
Introduction to Common Object File Format, discusses the COFF format in
detail.

Topic Page
A UREr OVEVIEY 550000500000500000500008500005000005000005000 7
7.2 The Linker’s Role in the Software Development Flow — 7-3[]
7.3 Invoking the Linkerc..iuiuieiiiii e, 7
74 LINKer OPtioNSottt 7t5 |
7.5 Linker Command Files c.iiuiiiiii 7t19 |
7.6 Object LIbranesoeoininii i
7.7 The MEMORY DIireCtivecoiuiiiiiiiiiiinann.. -24
7.8 The SECTIONS DIreCtiVet -27
7.9 Specifying a Section’s Runtime Address — 73|
7.10 Using UNION and GROUP Statements 7
7.11 Special Section Types (DSECT, COPY, and NOLOAD) 7
7.12 Default Allocation Algorithm i 7-44 |
7.13 Assigning Symbols at Link Time 7-

7.14 Creating and Filling Holes, 7
7.15 Partial (Incremental) Linking ... Z-
7.16 Linking C Code ... -56
7.17 Linker Example ... -61

Linker Overview

7.1 Linker Overview

7-2

The TMS320C6x linker allows you to configure system memory by allocating
output sections efficiently into the memory map. As the linker combines object
files, it performs the following tasks:

[J Allocates sections into the target system’s configured memory
[0 Relocates symbols and sections to assign them to final addresses
[0 Resolves undefined external references between input files

The linker command language controls memory configuration, output section
definition, and address binding. The language supports expression assign-
ment and evaluation. You configure system memory by defining and creating
a memory model that you design. Two powerful directives, MEMORY and
SECTIONS, allow you to:

[0 Allocate sections into specific areas of memory
[0 Combine object file sections
[Define or redefine global symbols at link time

The Linker’s Role in the Software Development Flow

7.2 The Linker's Role in the Software Development Flow

Figure 71 illustrates the linker’s role in the software development process.
The linker accepts several types of files as input, including object files, com-
mand files, libraries, and partially linked files. The linker creates an executable
COFF object module that can be downloaded to one of several development
tools or executed by a TMS320C6x device.

Figure 7—1. The Linker in the TMS320C6x Software Development Flow

. c .
. source o
. files .
. Macro - [H
SOl C . Assembly o
- files - C compiler . optimizer ¢
e — \ y : source ¢
. L] L]
Archiver * Assembler Assembly
\TJ . source . optimizer
: Macro ¢ v . -
T library . Assembly-
* : Assembler . Opt'mlzed .
: file :
< COFF - Library-build
Archiver e oObject o utility
. files . ‘T’
II— . .
S S v < Runtime- -
¢ Library of ¢ — e support e
. object - ») \. . library 3
. : . Linker
. files .
;_J
. Executable «
. COFF .
. . file :
Hex conversion

utility

v

EPROM ' Cross-'reference ' TMS320C6x
programmer lister

| T

Linker Description 7-3

Invoking the Linker

7.3

Invoking the Linker

The general syntax for invoking the linker is:

Ink6x [options] filename; ... filenamey,

Ink6x

options

is the command that invokes the linker.

can appear anywhere on the command line or in a linker com-
mand file. (Options are discussed in Section 7.4, Linker Op-
tions, on page 7-5.)

filenameq, can be object files, linker command files, or archive libraries.
filename, The default extension for all input files is .obj; any other exten-

sion must be explicitly specified. The linker can determine
whether the input file is an object or ASCII file that contains
linker commands. The default output filename is a.out, unless
you use the —o option to name the output file.

There are three methods for invoking the linker:

(1 Specify options and filenames on the command line. This example links

two

link.

files, filel.obj and file2.0bj, and creates an output module named
out.

Ink6x filel.0bj file2.0bj —o link.out

[EntertheInk6x command with no filenames or options; the linker prompts
for them:

Command files :
Obiject files [.obj] :
Output file [] :
Options :

For command files, enter one or more linker command filenames.

For object files, enter one or more object filenames. The default exten-
sion is .obj. Separate the filenames with spaces or commas; if the last
character is acomma, the linker prompts for an additional line of object
filenames.

The output file is the name of the linker output module. This overrides
any —o options that you enter. If there are no —o options and you do
not answer this prompt, the linker creates an object file with a default
filename of a.out.

The options prompt is for additional options, although you can also
enter them in a command file. Enter them with hyphens, just as you
would on the command line.

Invoking the Linker / Linker Options

[Putfilenames and options in a linker command file. For example, assume
the file linker.cmd contains the following lines:
—o link.out
filel.obj
file2.0bj
Now you can invoke the linker from the command line; specify the com-
mand filename as an input file:

Ink6x linker.cmd

When you use a command file, you can also specify other options and files
on the command line. For example, you could enter:

Ink6x —m link.map linker.cmd file3.ob)j

The linker reads and processes a command file as soon as it encounters
the filename on the command line, so it links the files in this order: file 1.obj,
file2.0bj, and file3.0bj. This example creates an output file called link.out
and a map file called link.map.

7.4 Linker Options

Linker options control linking operations. They can be placed on the command
line or in a command file. Linker options must be preceded by a hyphen (-).
Options can be separated from arguments (if they have them) by an optional
space. Table 7-1 summarizes the linker options.

You can string together the options that do not have parameters (for example,
Ink6x —ar) or enter them separately (for example, Ink6x —a —r). You must
specify options that have parameters separately from other options (for
example, Ink6x —i 6xtools —ar).

Linker Description 7-5

Linker Options

Table 7-1. Linker Options Summary

Option Description Page
-a Produces an absolute, executable module. This is the default; if neither —a nor —r 7-7
is specified, the linker acts as if —a were specified.
—ar Produces a relocatable, executable object module. 7-7
-b Disables merge of symbolic debugging information. 7-8
—C Autoinitializes variables at runtime. 7-9
—cr Initializes variables at load time. 7-9
—e global_symbol Defines a global symbol that specifies the primary entry point for the output module. 7-9
—f fill_value Sets the default fill value for holes within output sections; fill_value is a 32-bit 7-10
constant.
—g symbol Makes symbol global (overrides —h). 7-10
—-h Makes all global symbols static. 7-10
—heap size Sets heap size (for the dynamic memory allocation in C) to size words and defines 7-11
a global symbol that specifies the heap size. Default = 1K words.
—i pathname T Alters the library-search algorithm to look in a directory named with pathname 7-12
before looking in the default location. This option must appear before the —| option.
-] Disables conditional linking. 7-14
—I filename 1 Names an archive library or linker command filename as linker input. 7-11
—m filename 1 Produces a map or listing of the input and output sections, including holes, and 7-14
places the listing in filename.
-n Ignores all fill specifications in MEMORY directives. 7-15
—o filename t Names the executable output module. The default filename is a.out. 7-15
—q Suppresses the banner and all progress information (linker runs in quiet mode). 7-16
—r Produces a nonexecutable, relocatable output module. 7-7
-s Strips symbol table information and line number entries from the output module. 7-16
—stack size Sets C system stack size to size words and defines a global symbol that specifies 7-16
the stack size. Default = 1K words.
—u symbol Places an unresolved external symbol into the output module’s symbol table. 7-17
-w Displays a message when an undefined output section is created. 7-17
—X Forces rereading of libraries, which resolves back references. 7-18

T The pathname or filename must follow operating system conventions.

7-6

Linker Options

7.4.1 Relocation Capabilities (—a and —r Options)

The linker performs relocation, which is the process of adjusting all references
to a symbol when the symbol's address changes. The linker supports two
options (—a and —r) that allow you to produce an absolute or a relocatable out-
put module.

a

Producing an absolute output module (—a option)

When you use the —a option without the —r option, the linker produces an
absolute, executable output module. Absolute files contain no relocation
information. Executable files contain the following:

B Special symbols defined by the linker (section 7.13.4, on page 7-49,
describes these symbols)

B An optional header that describes information such as the program
entry point

B Nounresolved references

The following example links file1.obj and file2.0bj and creates an absolute
output module called a.out:

Inkéx —a filel.obj file2.0bj

Note: —a and —r Options

If you do not use the —a or the —r option, the linker acts as if you specified —a.

a

Producing a relocatable output module (—r option)

When you use the —r option without the —a option, the linker retains reloca-
tion entries in the output module. If the output module is relocated (at load
time) or relinked (by another linker execution), use —r to retain the
relocation entries.

The linker produces a file that is not executable when you use the —r option
without —a. Afile that is not executable does not contain special linker sym-
bols or an optional header. The file can contain unresolved references, but
these references do not prevent creation of an output module.

This example links filel.obj and file2.0bj and creates a relocatable output
module called a.out:
Inkéx —r filel.obj file2.0bj

The output file a.out can be relinked with other object files or relocated at
load time. (Linking a file that will be relinked with other files is called partial
linking. For more information, see Section 7.15, Partial (Incremental)
Linking, on page 7-54.)

Linker Description 7-7

Linker Options

[Producing an executable relocatable output module (—ar option
combination)

If you invoke the linker with both the —a and —r options, the linker produces
an executable, relocatable object module. The output file contains the
special linker symbols, an optional header, and all resolved symbol refer-
ences; however, the relocation information is retained.

This example links file1.obj and file2.0bj and creates an executable, relo-
catable output module called xr.out:

Inkéx —ar filel.obj file2.0bj —o0 xr.out

When the linker encounters a file that contains no relocation or symbol table
information, itissues a warning message (but continues executing). Relinking
an absolute file can be successful only if each input file contains no information
that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker
created it).

7.4.2 Disable Merge of Symbolic Debugging Information (—b Option)

By default, the linker eliminates duplicate entries of symbolic debugging
information. Such duplicate information is commonly generated when a C
program is compiled for debugging. For example:

—[header.h -
typedef struct

<define some structure members>
} XYZ;

—[fl.c]-
#include "header.h”

—[f2.c]-
#include "header.h”

When these files are compiled for debugging, both fl1.obj and f2.0bj have
symbolic debugging entries to describe type XYZ. For the final output file, only
one set of these entries is necessary. The linker eliminates the duplicate
entries automatically.

Use the —b option if you want the linker to keep such duplicate entries. Using
the —b option has the effect of the linker running faster and using less machine
memory.

Linker Options

7.4.3 C Language Options (—c and —cr Options)

The —c and —cr options cause the linker to use linking conventions that are
required by the C compiler.

[The —c option tells the linker to autoinitialize variables at runtime.
[The —cr option tells the linker to initialize variables at load time.

For more information, see Section 7.16, Linking C Code, on page 7-56, section
7.16.4, Autoinitialization of Variables at Runtime, on page 7-57, and section
7.16.5, Initialization of Variables at Load Time, on page 7-59.

7.4.4 Define an Entry Point (—e global_symbol Option)

The memory address at which a program begins executing is called the entry
point. When aloader loads a program into target memory, the program counter
(PC) must be initialized to the entry point; the PC then points to the beginning
of the program.

The linker can assign one of four values to the entry point. These values are
listed below in the order in which the linker tries to use them. If you use one
of the first three values, it must be an external symbol in the symbol table.

[The value specified by the —e option. The syntax is:

—e global_symbol

where global _symbol defines the entry point and must be as an external
symbol of the input files.

[The value of symbol _c_int00 (if present). The _c_int00 symbol must be
the entry point if you are linking code produced by the C compiler.

1 The value of symbol _main (if present)
1 O (default value)

This example links file1l.obj and file2.0bj. The symbol begin is the entry point;
begin must be defined as external in filel or file2.

Ink6x —e begin filel.obj file2.obj

Linker Description 7-9

Linker Options

7.4.5 Set Default Fill Value (—f fill_value Option)

The —f option fills the holes formed within output sections. The syntax for the
—f option is:

—f fill_value

The argument fill_value is a 32-bit constant (up to eight hexadecimal digits).
If you do not use —f, the linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
Inkéx —f OXABCDABCD filel.obj file2.0bj

7.4.6 Make a Symbol Global (—.g symbol Option)

The —h option makes all global symbols static. If you have a symbol that you
want to remain global and you use the —h option, you can use the —g option
to declare that symbol to be global. The —g option overrides the effect of the
—h option for the symbol that you specify. The syntax for the —g option is:

—g global_symbol

7.4.7 Make All Global Symbols Static (—h Option)

7-10

The —h option makes all global symbols static. Static symbols are not visible
to externally linked modules. By making global symbols static, global symbols
are essentially hidden. This allows external symbols with the same name (in
different files) to be treated as unique.

The —h option effectively nullifies all .global assembler directives. All symbols
become local to the module in which they are defined, so no external refer-
ences are possible. For example, assume filel.obj and file2.obj both define
global symbols called EXT. By using the —h option, you can link these files with-
out conflict. The symbol EXT defined in file.obj is treated separately from the
symbol EXT defined in file2.0bj.

Inkéx —h filel.obj file2.0bj

Linker Options

7.4.8 Define Heap Size (—heap size Option)

The C compiler uses an uninitialized section called .sysmem for the C runtime
memory pool used by malloc(). You can set the size of this memory pool at link
time by using the —heap option. The syntax for the —heap option is:

—heap size

The size must be a constant. This example defines a 4K byte heap:

Inkéx —heap 0x1000 /*defines a 4k heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in
an input file.

The linker also creates a global symbol __ SYSMEM_SIZE and assigns it a
value equal to the size of the heap. The default size is 1K bytes.

For more information, see Section 7.16, Linking C Code, on page 7-56.

7.4.9 Alter the Library Search Algorithm (-l Option, —i Option, and
C_DIR/C6X_DIR Environment Variables)

Usually, when you want to specify a library or linker command file as linker
input, you simply enter the library or command filename as you would any
other input filename; the linker looks for the filename in the current directory.
For example, suppose the current directory contains the library object.lib.
Assume that this library defines symbols that are referenced in the file file1.obj.
This is how you link the files:

Ink6x filel.obj object.lib

If you want to use a library or command file that is not in the current directory,
use the —| (lowercase L) linker option. The syntax for this option is:

—| [pathname] filename

The filenameis the name of an archive library or linker command file; the space
between —I and the filename is optional.

Linker Description 7-11

Linker Options

You can augment the linker’s directory search algorithm by using the —i linker
option or the C_DIR or C6X_DIR environment variables. The linker searches
for object libraries and command files specified by the —I option in the following
order:

1) It searches directories named with the —i linker option. The —i option must
appear before the —I option on the command line or in a command file.

2) It searches directories named with C_DIR and C6X_DIR.

3) IfC_DIR and C6X_DIR are not set, it searches directories named with the
assembler’s A_DIR environment variable.

4) It searches the current directory.

7.4.9.1 Name an Alternate Library Directory (—i pathname Option)

7-12

The —i option names an alternate directory that contains object libraries. The
syntax for this option is:

—i pathname

The pathname names a directory that contains object libraries; the space
between —i and the pathname is optional.

When the linker is searching for object libraries named with the —i option, it
searches through directories named with —i first. Each —i option specifies only
one directory, but you can use several —i options per invocation. When you use
the —i option to name an alternate directory, it must precede any —i option used
on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and
lib2.lib. Assume the following paths for the libraries:

UNIX /ld/r.lib and /Id2/lib2.lib
Windows c:\ld\r.lib and c:\Id2\lib2.lib

The following examples show how you can set the —i option and use both
libraries during a link:

Operating

System Enter

UNIX Ink6x f1.0bj f2.0bj —i/ld —i/ld2 —Ir.lib —llib2.lib
Windows Ink6x f1.0bj f2.0bj —i\ld —\ld2 —Ir.lib —llib2.lib

Linker Options

7.4.9.2 Name an Alternate Library Directory (C_DIR and C6X_DIR Environment Variables)

Anenvironment variable is a system symbol that you define and assign a string
to. The linker uses environment variables named C6X_DIR and C_DIR to
name alternate directories that contain object libraries. The command
syntaxes for assigning the environment variable are:

Operating System Enter

UNIX setenv C_DIR " pathnamey; pathnamey; . . ."

Windows set C_DIR= pathname;y;pathnamey; . . .

The pathnames are directories that contain object libraries. Use the —I (lower-
case L) linker option on the command line or in a command file to tell the linker
which library to search for.

For example, assume that there are two archive libraries called r.lib and
lib2.lib. Assume the following paths for the library files:

UNIX /Id/r.lib and /1d2/lib2.lib
Windows c:\ld\r.lib and c:\Id2\lib2.lib

The following examples show how to set the environment variable and use
both libraries during a link.

Operating System Enter

UNIX setenv C_DIR "/Id ;/1d2”
Ink6x f1.0bj f2.0bj —I r.lib —I lib2.lib

Windows set C_DIR=\Id;\Id2
Ink6x f1.0bj f2.0bj —I r.lib —I lib2.lib

The environment variable remains set until you reboot the system or reset the
variable by entering:

Operating System Enter

UNIX unsetenv C_DIR

Windows set C_DIR=

The assembler uses an environment variable named A_DIR to name alternate
directories that contain copy/include files or macro libraries. If C_DIR is not set,
the linker searches for object libraries in the directories named with A_DIR. For
more information about object libraries, see Section 7.6 on page 7-22.

Linker Description 7-13

Linker Options

7.4.10 Disable Conditional Linking (—j Option)

The —j option disables conditional linking that has been set up with the assem-
bler .clink directive. By default, all sections are unconditionally linked. See
page 4-26 for details on setting up conditional linking using the .clink directive.

7.4.11 Create a Map File (—m filename Option)

The —m option creates a linker map listing and puts it in filename. The syntax
for the —m option is:

—m filename

The linker map describes:

(1 Memory configuration
[(J Input and output section allocation
(1 The addresses of external symbols after they have been relocated

The map file contains the name of the output module and the entry point; it can
also contain up to three tables:

(1 Atable showing the new memory configuration if any nondefault memory
is specified (memory configuration). The table has the following columns;
this information is generated on the basis of the information in the
MEMORY directive in the linker command file:

B Name. This is the name of the memory range specified with the
MEMORY directive.

B Origin. This specifies the starting address of a memory range.
B Length. This specifies the length of a memory range.

B Attributes. This specifies one to four attributes associated with the
named range:

specifies that the memory can be read.

specifies that the memory can be written to.

specifies that the memory can contain executable code.
specifies that the memory can be initialized.

- X s

B Fill. This specifies a fill character for the memory range.

For more information about the MEMORY directive, see Section 7.7, The
MEMORY Directive, on page 7-24.

7-14

Linker Options

[J Atable showing the linked addresses of each output section and the input
sections that make up the output sections (section allocation map). This
table has the following columns; this information is generated on the basis
of the information in the SECTIONS directive in the linker command file:

B Output section. This is the name of the output section specified with
the SECTIONS directive.

B Origin. Thefirst origin listed for each output section is the starting ad-
dress of that output section. The indented origin value is the starting
address of that portion of the output section.

B Length. The first length listed for each output section is the length of
that output section. The indented length value is the length of that por-
tion of the output section.

B Attributes/input sections. This lists the input file or value associated
with an output section.

For more information about the SECTIONS directive, see Section 7.8, The
SECTIONS Directive, on page 7-27.

] Atable showing each external symbol and its address. This table has two
columns: the left column contains the symbols sorted by name, and the
right column contains the symbols sorted by address.

This following example links file1.obj and file2.0bj and creates a map file called
map.out:

Ink6x filel.obj file2.0bj —m map.out

Example 7-12 on page 7-63 shows an example of a map file.

7.4.12 Ignore the MEMORY Directive Fill Specification (—n Option)

The —n option forces the linker to ignore any MEMORY directive fill specifica-
tion. Use this option in the development stage of a project to avoid generating
large .out files, which can result from the use of MEMORY directive fill specifi-
cations.

7.4.13 Name an Output Module (—o Option)

The linker creates an output module when no errors are encountered. If you
do not specify a filename for the output module, the linker gives it the default
name a.out. If you want to write the output module to a different file, use the
—0 option. The syntax for the —o option is:

—o0 filename

Linker Description 7-15

Linker Options

The filename is the new output module name.

This example links file1.obj and file2.obj and creates an output module named
run.out:

Ink6éx —o run.out filel.obj file2.obj

7.4.14 Specify a Quiet Run (—q Option)

The —qg option suppresses the linker’s banner, but it must be the first option
listed. If it is not, the banner displays. This option is useful for batch operation.

7.4.15 Strip Symbolic Information (—s Option)

The —s option creates a smaller output module by omitting symbol table
information and line number entries. The —s option is useful for production
applications when you must create the smallest possible output module.

This example links filel.obj and file2.0bj and creates an output module,
stripped of line numbers and symbol table information, named nosym.out:

Ink6x —0 nosym.out —s filel.obj file2.0bj

Because the —s option strips symbolic information from the output module,
using the —s option limits later use of a symbolic debugger and can prevent a
file from being relinked.

7.4.16 Define Stack Size (—stack size Option)

7-16

The TMS320C6x C compiler uses an uninitialized section, .stack, to allocate
space for the runtime stack. You can set the size of this section at link time with
the —stack option. The syntax for the —stack option is:

—stack size

The size must be a constant. This example defines a 4K byte stack:

Ink6x —stack 0x1000 /* defines a 4K stack (.stack section) */

If you specified a different stack size in an input section, the input section stack
size isignored. Any symbols defined in the input section remain valid; only the
stack size is different.

When the linker defines the .stack section, it also defines a global symbol,
__STACK_SIZE, and assigns it a value equal to the size of the section. The
default software stack size is 1K hytes.

Linker Options

7.4.17 Introduce an Unresolved Symbol (-u symbol Option)

The —u option introduces an unresolved symbol into the linker’s symbol table.
This forces the linker to search a library and include the member that defines
the symbol. The linker must encounter the —u option before it links in the mem-
ber that defines the symbol. The syntax for the —u option is:

—u symbol

For example, suppose a library named rts6201.lib contains a member that
defines the symbol symtab; none of the object files being linked reference
symtab. However, suppose you plan to relink the output module and you want
to include the library member that defines symtab in this link. Using the —u
option as shown below forces the linker to search rts6201.lib for the member
that defines symtab and to link in the member.

Ink6x —u symtab filel.obj file2.0bj rts6201.lib

If you do not use —u, this member is not included, because there is no explicit
reference to it in filel.obj or file2.0bj.

7.4.18 Display a Message When an Undefined Output Section Is Created (—w Option)

In a linker command file, you can set up a SECTIONS directive that describes
how input sections are combined into output sections. However, if the linker
encounters one or more input sections that do not have a corresponding
output section defined in the SECTIONS directive, the linker combines the
input sections that have the same name into an output section with that name.
By default, the linker does not display a message to tell you that this occurred.

You can use the —w option to cause the linker to display a message when it
creates a new output section.

For more information about the SECTIONS directive, see Section 7.8 on
page 7-27. For more information about the default actions of the linker, see
Section 7.12 on page 7-44.

Linker Description 7-17

Linker Options

7.4.19 Exhaustively Read Libraries (—x Option)

7-18

The linker normally reads input files, including archive libraries, only once:
when they are encountered on the command line or in the command file. When
an archive isread, any members that resolve references to undefined symbols
are included in the link. If an input file later references a symbol defined in a
previously read archive library (this is called a back reference), the reference
is not resolved.

With the —x option, you can force the linker to repeatedly reread all libraries.
The linker continues to reread libraries until no more references can be
resolved. For example, if a.lib contains a reference to a symbol defined in b.lib,
and b.lib contains a reference to a symbol defined in a.lib, you can resolve the
mutual dependencies by listing one of the libraries twice, as in:

Ink6x —la.lib —Ib.lib —la.lib
or you can force the linker to do it for you:
Ink6x —x —la.lib —Ib.lib

Linking with the —x option may be slower than reading input files once each,
so you should use it only as needed.

Linker Command Files

7.5 Linker Command Files

Linker command files allow you to put linking information in a file; this is useful
when you invoke the linker often with the same information. Linker command
files are also useful because they allow you to use the MEMORY and
SECTIONS directives to customize your application. You must use these
directives in a command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

g Inputfilenames, which specify object files, archive libraries, or other com-
mand files. (If a command file calls another command file as input, this
statement must be the /ast statement in the calling command file. The
linker does not return from called command files.)

[Linkeroptions, which can be used in the command file in the same manner
that they are used on the command line

1 The MEMORY and SECTIONS linker directives. The MEMORY directive
defines the target memory configuration (see Section 7.7, on page 7-24).
The SECTIONS directive controls how sections are built and allocated
(see Section 7.8 on page 7-27.)

[Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the Ink6x command and follow
it with the name of the command file:

Ink6x command_filename

The linker processes input files in the order that it encounters them. If the linker
recognizes a file as an object file, it links the file. Otherwise, it assumes that
a file is a command file and begins reading and processing commands from
it. Command filenames are case sensitive, regardless of the system used.

Example 7-1 shows a sample linker command file called link.cmd.

Example 7-1. Linker Command File

a.obj /* First input filename */

b.obj /* Second input filename */

—o prog.out /* Option to specify output file */
—m prog.map /* Option to specify map file */

The sample file in Example 7—1 contains only filenames and options. (You can
place comments in a command file by delimiting them with /* and */.) To invoke
the linker with this command file, enter:

Ink6x link.cmd

Linker Description 7-19

Linker Command Files

You can place other parameters on the command line when you use a
command file:

Ink6x —r link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters the filename,
S0 a.obj and b.obj are linked into the output module before c.obj and d.ob;.

You can specify multiple command files. If, for example, you have a file called
names.Ist that contains filenames and another file called dir.cmd that contains
linker directives, you could enter:

Ink6x names.Ist dir.cmd

One command file can call another command file; this type of nesting is limited
to 16 levels. If a command file calls another command file as input, this state-
ment must be the /ast statement in the calling command file.

Blanks and blank lines are insignificant in a command file except as delimiters.
This also applies to the format of linker directives in a command file.
Example 7-2 shows a sample command file that contains linker directives.

Example 7—2. Command File With Linker Directives

7-20

a.obj b.obj c.obj /* Input filenames */
—0 prog.out —m prog.map /* Options */
MEMORY /* MEMORY directive */

FAST_MEM: origin = 0x0100 length = 0x0100
SLOW_MEM: origin = 0x7000 length = 0x1000
}

SECTIONS /* SECTIONS directive */

fext: > SLOW_MEM
.data: > SLOW_MEM
.bss: >FAST_MEM

}

For more information about the MEMORY directive, see Section 7.7, The
MEMORY Directive, on page 7-24. For more information about the SEC-
TIONS directive, see Section 7.8, The SECTIONS Directive, on page 7-27.

Linker Command Files

7.5.1 Reserved Names in Linker Command Files

The following names are reserved as keywords for linker directives. Do not use
them as symbol or section names in a command file.

align group org
ALIGN GROUP origin
attr | (lowercase L) ORIGIN
ATTR len range
block length run
BLOCK LENGTH RUN
COPY load SECTIONS
DSECT LOAD spare

f MEMORY type

fill NOLOAD TYPE
FILL 0 UNION

7.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used
for specifying decimal, octal, or hexadecimal constants used in the assembler
(see Section 3.6, Constants, on page 3-12) or the scheme used for integer
constants in C syntax.

Examples:

Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h

C format 32 040 0x20

Linker Description 7-21

Object Libraries

7.6 Object Libraries

7-22

An object library is a partitioned archive file that contains object files as mem-
bers. Usually, a group of related modules are grouped together into a library.
When you specify an object library as linker input, the linker includes any
members of the library that define existing unresolved symbol references. You
can use the archiver to build and maintain libraries. Chapter 6, Archiver
Description, contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable mod-
ule. Normally, if an object file that contains a function is specified at link time,
the file is linked whether the function is used or not; however, if that same func-
tionis placed in an archive library, the file is included only if the function is refer-
enced.

The order in which libraries are specified is important, because the linker
includes only those members that resolve symbols that are undefined at the
time the library is searched. The same library can be specified as often as
necessary; it is searched each time it is included. Alternatively, you can use
the —x option to reread libraries until no more references can be resolved (see
section 7.4.19, Exhaustively Read Libraries (—x Option), on page 7-18). A
library has a table that lists all external symbols defined in the library; the linker
searches through the table until it determines that it cannot use the library to
resolve any more references.

The following examples link several files and libraries, using these assump-
tions:

(1 Input files f1.0bj and f2.0bj both reference an external function named
clrscr.

Input file f1.0bj references the symbol origin.
Input file f2.0bj references the symbol fillclr.

Member 0 of library libc.lib contains a definition of origin.

I Iy N Iy

Member 3 of library liba.lib contains a definition of fillclr.
(1 Member 1 of both libraries defines clrscr.

If you enter:
Ink6x f1.0bj f2.0bj liba.lib libc.lib
then:

(1 Member 1 of liba.lib satisfies the f1.obj and f2.obj references to clrscr
because the library is searched and the definition of clrscr is found.

(1 Member 0 of libc.lib satisfies the reference to origin.

[Member 3 of liba.lib satisfies the reference to fillclr.

Object Libraries

If, however, you enter:

Ink6x f1.obj f2.0bj libc.lib liba.lib

then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use
the —u option to force the linker to include a library member. (See section
7.4.17, Introduce an Unresolved Symbol (—u symbol Option), on page 7-17.)
The next example creates an undefined symbol routl in the linker’s global
symbol table:

Ink6x —u routl libc.lib

If any member of libc.lib defines routl, the linker includes that member.

It is not possible to control the allocation of individual library members; mem-
bers are allocated according to the SECTIONS directive default allocation
algorithm. For more information, see Section 7.8, The SECTIONS Directive,
on page 7-27.

Section 7.4.9, Alter the Library Search Algorithm (- Option, —i Option, and
C_DIR Environment Variable) on page 7-11 describes methods for specifying
directories that contain object libraries.

Linker Description 7-23

The MEMORY Directive

7.7 The MEMORY Directive

The linker determines where output sections are allocated into memory; it
must have a model of target memory to accomplish this. The MEMORY
directive allows you to specify a model of target memory so that you can define
the types of memory your system contains and the address ranges they
occupy. The linker maintains the model as it allocates output sections and uses
it to determine which memory locations can be used for object code.

The memory configurations of TMS320C6x systems differ from application to
application. The MEMORY directive allows you to specify a variety of configu-
rations. After you use MEMORY to define a memory model, you can use the
SECTIONS directive to allocate output sections into defined memory.

For more information, see Section 2.3, How the Linker Handles Sections, on
page 2-11 and Section 2.4, Relocation, on page 2-14.

7.7.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory
model thatis based on the TMS320C6x architecture. This model assumes that
the full 32-bit address space (232 locations) is present in the system and avail-
able for use. For more information about the default memory model, see Sec-
tion 7.12, Default Allocation Algorithm, on page 7-44.

7.7.2 MEMORY Directive Syntax

7-24

The MEMORY directive identifies ranges of memory that are physically pres-
entinthe target system and can be used by a program. Each range has several
characteristics:

Name

Starting address

Length

Optional set of attributes
Optional fill specification

Uoooo

When you use the MEMORY directive, be sure to identify all memory ranges
that are available for loading code. Memory defined by the MEMORY directive
is configured; any memory that you do not explicitly account for with MEMORY
is unconfigured. The linker does not place any part of a program into unconfi-
gured memory. You can represent nonexistent memory spaces by simply not
including an address range in a MEMORY directive statement.

The MEMORY Directive

The MEMORY directive is specified in a command file by the word MEMORY
(uppercase), followed by a list of memory range specifications enclosed in
braces. The MEMORY directive in Example 7—-3 defines a system that has 4K
bytes of fast external memory at address 0x0000 0000, 2K bytes of slow exter-
nal memory at address 0x0000 1000 and 4K bytes of slow external memory
at address 0x1000 0000.

Example 7-3. The MEMORY Directive

MEMORY
directive

/ HRARR, HRARK, /

/¥ Sample command file with MEMORY directive */

filel.obj file2.obj /* Inputfiles */

—0 prog.out [* Options */

- MEMORY
ST_MEM (RX): origin = 0x00000000 length = §x00001000

5LOW_MEM (RW): arigin = 0x00001000 length = 0x00000800
XT_MEM (RX): origin = 0x10000000 length = 0x00001000

}

Names Origins J Lengths

The general syntax for the MEMORY directive is:

MEMORY
{

name 1 [(attr)] : origin = constant, length = constant[, fill = constant]

name n|[(attr)] : origin = constant, length = constant|, fill = constant]

name names a memory range. A memory name can be one to eight char-
acters; valid characters include A-Z, a-z, $, ., and _. The names
have no special significance to the linker; they simply identify
memory ranges. Memory range names are internal to the linker
and are not retained in the output file or in the symbol table. All
memory ranges must have unigue names and must not overlap.

Linker Description 7-25

The MEMORY Directive

7-26

attr specifies one to four attributes associated with the named range.
Attributes are optional; when used, they must be enclosed in pa-
rentheses. Attributes restrict the allocation of output sections into
certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any
memory for which no attributes are specified (including all memory
in the default model) has all four attributes. Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I

specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin,
org, or 0. The value, specified in bytes, is a 32-bit constant and can
be decimal, octal, or hexadecimal.

length specifies the length of a memory range; enter as length, len, or |.
The value, specified in bytes, is a 32-bit constant and can be deci-
mal, octal, or hexadecimal.

fill specifies a fill character for the memaory range; enter as fill or f. Fills
are optional. The value is a 32-bit integer constant and can be deci-
mal, octal, or hexadecimal. The fill value is used to fill areas of the
memory range that are not allocated to a section.

Note: Filling Memory Ranges

If you specify fill values for large memaory ranges, your output file will be very
large because filling a memory range (even with 0s) causes raw data to be
generated for all unallocated blocks of memory in the range.

The following example specifies a memory range with the R and W attributes
and a fill constant of OFFFFFFFFh:

MEMORY

RFILE (RW) : 0 = 0x0020h, | = 0x1000, f = OXFFFFFFFFh

You normally use the MEMORY directive in conjunction with the SECTIONS
directive to control allocation of output sections. After you use MEMORY to
specify the target system’s memory model, you can use SECTIONS to allocate
output sections into specific named memory ranges or into memory that has
specific attributes. For example, you could allocate the .text and .data sections
into the area named FAST_MEM and allocate the .bss section into the area
named SLOW_MEM.

The SECTIONS Directive

7.8 The SECTIONS Directive
The SECTIONS directive:
(] Describes how input sections are combined into output sections
1 Defines output sections in the executable program

[Specifies where output sections are placed in memory (in relation to each
other and to the entire memory space)

[J Permits renaming of output sections

For more information, see Section 2.3, How the Linker Handles Sections, on
page 2-11; Section 2.4, Relocation, on page 2-14; and section 2.2.4, Subsec-
tions, on page 2-7. Subsections allow you to manipulate sections with greater
precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm
for combining and allocating the sections. Section 7.12, Default Allocation
Algorithm, on page 7-44 describes this algorithm in detail.

7.8.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word
SECTIONS (uppercase), followed by a list of output section specifications
enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS

{
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

Linker Description 7-27

The SECTIONS Directive

7-28

Each section specification, beginning with name, defines an output section.
(An output section is a section in the output file.) A section name can be a
subsection specification. After the section name is a list of properties that
define the section’s contents and how the section is allocated. The properties
can be separated by optional commas. Possible properties for a section are:

(1 Load allocation defines where in memory the section is to be loaded.

Syntax:
load = allocation or
allocation or
> allocation

Allocation represents portions of the syntax that specify how sections are
placed in the target memory. See section 7.8.2 on page 7-30 for more in-
formation about specifying the allocation.

(1 Run allocation defines where in memory the section is to be run.

Syntax:
run = allocation or
run > allocation

Allocation represents portions of the syntax that specify how sections are
placed in the target memory.

[Inputsections defines the input sections (object files) that constitute the
output section.

Syntax:
{ input_sections }

[J Section type defines flags for special section types.

Syntax:
type = COPY or
type = DSECT or
type = NOLOAD

For more information, see Section 7.11, Special Section Types (DSECT,
COPY, and NOLOAD), on page 7-43.

[J Fill value defines the value used to fill uninitialized holes.

Syntax:
fill = value or
name : [properties] = value

For more information, see Section 7.14, Creating and Filling Holes, on
page 7-50.

The SECTIONS Directive

Example 7-4 shows a SECTIONS directive in a sample linker command file.

Example 7-4. The SECTIONS Directive

I' * * * * * * * * /

[* Sample command file with SECTIONS directive */

[FRExkkkkkkkk * Kkkkkkkkk /

filel.obj file2.0bj [* Input files */
—0 prog.out [* Options */
SECTIONS | SECTIONS
directive {

fext: load = EXT_MEM, run = 0x00000800
jconst: load = FAST_MEM
Jbss: load = SLOW_MEM
Jvectors: load = 0x00000000

Section t1.obj(.intvecl)
specifications t2.obj(.intvec2)
endvec = ;

}
Jdata:alpha: align = 16
Idata:beta: align = 16

Figure 7—-2 shows the six output sections defined by the SECTIONS directive
in Example 7-4 (.vectors, .text, .const, .bss, .data:alpha, and data:beta) and
shows how these sections are allocated in memory.

Linker Description 7-29

The SECTIONS Directive

Figure 7-2. Section Allocation Defined by Example 7—4

0x00000000 FAST MEM
.vectors — Bound at 0x00000000 The .vectors section is composed of the .intvecl
section from tl.obj and the .intvec2 section from
t2.0bj.
.const — Allocated in FAST_MEM The .const section combines the .const sections
from filel.obj and file2.obj.
0x00001000
SLOW_MEM
.bss — Allocated in SLOW_MEM The .bss section combines the .bss sections from
filel.obj and file2.0bj.
.data:alpha — Aligned on 16-byte The .data:alpha subsection combines the
boundary .data:alpha subsections from file1.obj and file2.obj.
:) The .data:beta subsection combines the .data:beta
-data:beta — Aligned on 16-byte subsections from file1l.obj and file2.obj. The linker
boundary . .
places the subsections anywhere there is space for
0x00001800 |- them (in SLOW_MEM in this illustration) and aligns
///// each on a 16-byte boundary.
0x10000000 % . . .
EXT_MEM The .text section combines the .text sections from
) filel.obj and file2.0bj. The linker combines all sec-
text — Allocated in EXT_MEM tions named .text into this section. The application
must relocate the section to run at 0x00000800.
0x10001000 7//
OXFFFFFFFF %

7.8.2 Allocation

7-30

The linker assigns each output section two locations in target memory: the
location where the section will be loaded and the location where it will be run.
Usually, these are the same, and you can think of each section as having only
a single address. The process of locating the output section in the target’s
memory and assigning its address(es) is called allocation. For more informa-
tion about using separate load and run allocation, see Section 7.9, Specifying
a Section’s Runtime Address, on page 7-36.

If you do not tell the linker how a section is to be allocated, it uses a default
algorithm to allocate the section. Generally, the linker puts sections wherever
they fit into configured memory. You can override this default allocation for a
section by defining it within a SECTIONS directive and providing instructions
on how to allocate it.

The SECTIONS Directive

You control allocation by specifying one or more allocation parameters. Each
parameter consists of a keyword, an optional equal sign or greater-than sign,
and a value optionally enclosed in parentheses. If load and run allocation are
separate, all parameters following the keyword LOAD apply to load allocation,
and those following the keyword RUN apply to run allocation. The allocation
parameters are:

Binding allocates a section at a specific address.
.text: load = 0x1000

Named allocates the section into arange defined inthe MEMORY direc-
memory tive with the specified name (like SLOW_MEM) or attributes.

.text: load > SLOW_MEM

Alignment uses the align keyword to specify that the section must start on
an address boundary.

.text: align = 0x100

Blocking uses the block keyword to specify that the section must fit
between two address boundaries: if the section is too big, it
starts on an address boundary.

.text: block(0x100)

For the load (usually the only) allocation, you can simply use a greater-than
sign and omit the load keyword:

text: > SLOW_MEM text: {...} > SLOW_MEM
text: > 0x4000

If more than one parameter is used, you can string them together as follows:
.text: > SLOW_MEM align 16

Or if you prefer, use parentheses for readability:

.text: load = (SLOW_MEM align(16))

You can also use an input section specification to identify the sections from

input files that are combined to form an output section. For more information,
see section 7.8.3, Specifying Input Sections, on page 7-34.

Linker Description 7-31

The SECTIONS Directive

7.8.2.1 Binding

You can supply a specific starting address for an output section by following
the section name with an address:

.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000.
The binding address must be a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming
there is enough space), but they cannot overlap. If there is not enough space
to bind a section to a specified address, the linker issues an error message.

Note: Binding is Incompatible With Alignment and Named Memory

You cannot bind a section to an address if you use alignment or named
memory. If you try to do this, the linker issues an error message.
L

7.8.2.2 Named Memory

7-32

You can allocate a section into a memory range that is defined by the
MEMORY directive (see Section 7.7, The MEMORY Directive, on page 7-24).
This example names ranges and links sections into them:

MEMORY

SLOW_MEM (RIX) : origin = 0x00000000, length = 0x00001000
FAST MEM (RWIX) : origin = 0x30000000, length = 0x00000300
}

SECTIONS

{
text : > SLOW_MEM
.data : >FAST_MEM ALIGN(128)
.bss >FAST_MEM

In this example, the linker places .text into the area called SLOW_MEM. The
.data and .bss output sections are allocated into FAST_MEM. You can align
a section within a named memory range; the .data section is aligned on a
128-byte boundary within the FAST_MEM range.

The SECTIONS Directive

Similarly, you can link a section into an area of memory that has particular
attributes. To do this, specify a set of attributes (enclosed in parentheses)
instead of a memory name. Using the same MEMORY directive declaration,
you can specify:

SECTIONS
text: > (X) [* .text —> executable memory */
.data: > (RI) [* .data —> read or init memory */
.bss: > (RW) [* .bss —> read or write memory */
}

In this example, the .text output section can be linked into either the
SLOW_MEM or FAST_MEM area because both areas have the X attribute.
The .data section can also go into either SLOW_MEM or FAST_MEM because
both areas have the R and | attributes. The .bss output section, however, must
go into the FAST_MEM area because only FAST_MEM is declared with the
W attribute.

You cannot control where in a named memory range a section is allocated,
although the linker uses lower memory addresses first and avoids fragmenta-
tion when possible. In the preceding examples, assuming no conflicting
assignments exist, the .text section starts at address 0. If a section must start
on a specific address, use binding instead of named memory.

7.8.2.3 Alignment and Blocking

You can tell the linker to place an output section at an address that falls on an
n-byte boundary, where n is a power of 2, by using the align keyword. For
example:

.text: load = align(32)

allocates .text so that it falls on a 32-byte boundary.

Blocking is a weaker form of alignment that allocates a section anywhere
within a block of size n. The specified block size must be a power of 2. For
example:

bss: load = block(0x0080)

allocates .bss so that the entire section is contained in a single 128K-byte page
or begins on that boundary.

You can use alignment or blocking alone or in conjunction with a memory area,
but alignment and blocking cannot be used together.

Linker Description 7-33

The SECTIONS Directive

7.8.3 Specifying Input Sections

An input section specification identifies the sections from input files that are
combined to form an output section. The linker combines input sections by
concatenating them in the order in which they are specified. The size of an
output section is the sum of the sizes of the input sections that it comprises.

Example 7-5 shows the most common type of section specification; note that
no input sections are listed.

Example 7-5. The Most Common Method of Specifying Section Contents

7-34

SECTIONS

{
ext:
.data:
.bss:

}

In Example 7-5, the linker takes all the .text sections from the input files and
combines them into the .text output section. The linker concatenates the .text
input sections in the order that it encounters them in the input files. The linker
performs similar operations with the .data and .bss sections. You can use this
type of specification for any output section.

You can explicitly specify the input sections that form an output section. Each
input section is identified by its filename and section name:

SECTIONS
{

text: /* Build .text output section */

fl.obj(.text) /* Link .text section from fl.obj */
f2.0bj(secl) [* Link secl section from f2.0bj */
f3.0bj [* Link ALL sections from f3.0bj */
f4.0bj(.text,sec?2) /* Link .text and sec2 from f4.obj */

}

It is not necessary for input sections to have the same name as each other or
as the output section they become part of. If a file is listed with no sections, all
of its sections are included in the output section. If any additional input sections
have the same name as an output section but are not explicitly specified by
the SECTIONS directive, they are automatically linked in at the end of the out-
put section. For example, if the linker found more .text sections in the preced-
ing example and these .text sections were not specified anywhere in the
SECTIONS directive, the linker would concatenate these extra sections after
f4.0bj(sec2).

The SECTIONS Directive

The specifications in Example 7-5 are actually a shorthand method for the
following:

SECTIONS

text: { *(.text) }

.data: { *(.data) }

.bss: {*(.bss) }
}

The specification *(.text) means the unallocated .text sections from all the
input files. This format is useful when:

1 Youwantthe output section to contain all input sections that have a speci-
fied name, but the output section name is different from the input sections’
name.

1 Youwantthe linker to allocate the input sections before it processes addi-
tional input sections or commands within the braces.

The following example illustrates the two purposes above:

SECTIONS

{
text @ {

abc.obj(xqt)
*(.text)

.data : {
*(.data)
fil.obj(table)

}

In this example, the .text output section contains a named section xqt from file
abc.obj, which is followed by all the .text input sections. The .data section
contains all the .data input sections, followed by a named section table from
the file fil.obj. This method includes all the unallocated sections. For example,
if one of the .text input sections was already included in another output section
when the linker encountered *(.text), the linker could not include that first .text
input section in the second output section.

Linker Description 7-35

Specifying a Section’s Runtime Address

7.9 Specifying a Section’s Runtime Address

At times, you may want to load code into one area of memory and run it in
another. For example, you may have performance-critical code in slow
external memory. The code must be loaded into slow external memory, but it
would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the
SECTIONS directive to direct the linker to allocate a section twice: once to set
its load address and again to set its run address. For example:

fir: load = SLOW_MEM, run = FAST_MEM

Use the load keyword for the load address and the run keyword for the run
address.

See Section 2.5, Runtime Relocation, on page 2-16, for an overview on
runtime relocation.

7.9.1 Specifying Load and Run Addresses

7-36

The load address determines where a loader places the raw data for the sec-
tion. Any references to the section (such as labels in it) refer to its run address.
The application must copy the section from its load address to its run address;
this does not happen automatically when you specify a separate run address.

If you provide only one allocation (either load or run) for a section, the section
is allocated only once and loads and runs at the same address. If you provide
both allocations, the section is allocated as if it were two sections of the same
size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides
a way to overlay sections; see section 7.10.1, Overlaying Sections With the
UNION Statement, on page 7-40.)

If either the load or run address has additional parameters, such as alignment
or blocking, list them after the appropriate keyword. Everything related to
allocation after the keyword load affects the load address until the keyword run
is seen, after which, everything affects the run address. The load and run allo-
cations are completely independent, so any qualification of one (such as align-
ment) has no effect on the other. You can also specify run first, then load. Use
parentheses to improve readability.

Specifying a Section’s Runtime Address

The examples below specify load and run addresses:

.data: load = SLOW_MEM, align = 32, run = FAST_MEM

(align applies only to load)

.data: load = (SLOW_MEM align 32), run = FAST_MEM

(identical to previous example)

.data: run = FAST_MEM, align 32,
load = align 16

(align 32 in FAST_MEM for run; align 16 anywhere for load)

7.9.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant
address is the run address. The linker allocates uninitialized sections only
once: if you specify both run and load addresses, the linker warns you and
ignores the load address. Otherwise, if you specify only one address, the linker
treats it as a run address, regardless of whether you call it load or run. This
example specifies load and run addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All
of the following examples have the same effect. The .bss section is allocated
in FAST_MEM.

.bss: load = FAST_MEM
.bss: run = FAST_MEM
.bss: > FAST_MEM

7.9.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its runtime address.
However, it may be necessary at runtime to refer to a load-time address.
Specifically, the code that copies a section from its load address to its run
address must have access to the load address. The .label directive defines a
special symbol that refers to the section’s load address. Thus, whereas normal
symbols are relocated with respect to the run address, .label symbols are relo-
cated with respect to the load address. For more information on the .label
directive, see page 4-48.

Example 7—6 shows the use of the .label directive. Figure 7-3 illustrates the
runtime execution of Example 7—6.

Linker Description 7-37

Specifying a Section’s Runtime Address

Example 7—6. Copying a Section From SLOW_MEM to FAST_MEM

7-38

(a) Assembly language file

.sect "fir

.align 4

label fir_src
fir

;<code here

label fir_end

text

MVK fir_src, A4
MVKH fir_src, A4
MVK fir_end, A5
MVKH fir_end, A5
MVK fir, A6
MVKH fir, A6
SUB A4, A5, Al

loop:

['A1] B done
LDW *A4++, B3
NOP 4
: branch occurs
STW B3, *A6++
SUB A1, 4, Al
B loop
NOP 5
: branch occurs

done:
B fir
NOP 5
; call occurs

(b) Linker command file

/ /
/* PARTIAL LINKER COMMAND FILE FOR FIR EXAMPLE
/ * * * * /

MEMORY

FAST_MEM : origin = 0x00001000, length = 0x00001000
SLOW_MEM : origin = 0x10000000, length = 0x00001000

}
SECTIONS

.text: load = FAST_MEM
fir; load = SLOW_MEM, run FAST_MEM

}

*/

Specifying a Section’s Runtime Address

Figure 7-3. Runtime Execution of Example 7—6

0x00000000
FAST_MEM
e |
ro T T T
| fir (relocated |

to run here) A

L -7 |

0x00001000

0x10000000
SLOW_MEM
T a
| fir (loads here) |
L |

0x10001000

OxFFFFFFFF

Linker Description 7-39

Using UNION and GROUP Statements

7.10 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and
UNION. Unioning sections causes the linker to allocate them to the same run
address. Grouping sections causes the linker to allocate them contiguously in
memory. Section names can refer to sections, subsections, or archive library
members.

7.10.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to run
at the same address. For example, you may have several routines you want
in fast external memory at various stages of execution. Or you may want sev-
eral data objects that are not active at the same time to share a block of
memory. The UNION statement within the SECTIONS directive provides a
way to allocate several sections at the same runtime address.

In Example 7-7, the .bss sections from filel.obj and file2.obj are allocated at
the same address in FAST_MEM. In the memory map, the union occupies as
much space as its largest component. The components of a union remain
independent sections; they are simply allocated together as a unit.

Example 7—7. The UNION Statement

SECTIONS

.text: load = SLOW_MEM
UNION: run = FAST_MEM

.bss:partl: { filel.obj(.bss) }
.bss:part2: { file2.obj(.bss) }

.bss:part3: run = FAST_MEM { globals.obj(.bss) }

}

Allocation of a section as part of a union affects only its run address. Under no
circumstances can sections be overlaid for loading. If an initialized section is
a union member (an initialized section, such as .text, has raw data), its load
allocation must be separately specified. See Example 7-8.

Example 7-8. Separate Load Addresses for UNION Sections

7-40

UNION run = FAST_MEM

text:partl: load = SLOW_MEM, { filel.obj(.text) }
text:part2: load = SLOW_MEM, { file2.obj(.text) }

}

Allocation for Example 7-7

Using UNION and GROUP Statements

Figure 7-4. Memory Allocation Shown in Example 7—7 and Example 7-8

Allocation for Example 7—8

FAST _MEM FAST_MEM
.bss:part2 I__Sectlon; can run .text 2 (run) Ao Copie_s at
as a union. This runtime
- .bSS:partl is runtime alloca- text 1 (run)
tion only.
.bss:part3
7///// W
SLOW_MEM SLOW_MEM

text

~]

.text 1 (load)

Sections cannot
load as a union.

.text 2 (load)

Since the .text sections contain data, they cannot load as a union, although
they can be run as a union. Therefore, each requires its own load address. If
you fail to provide a load allocation for an initialized section within a UNION,
the linker issues a warning and allocates load space anywhere it can in config-
ured memory.

~

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is
meaningless to specify a load address for the union itself. For purposes of
allocation, the union is treated as an uninitialized section: any one allocation
specified is considered a run address, and if both run and load addresses are
specified, the linker issues a warning and ignores the load address.

Linker Description 7-41

Using UNION and GROUP Statements

7.10.2 Grouping Output Sections Together

The SECTIONS directive’s GROUP option forces several output sections to
be allocated contiguously. For example, assume that a section named
term_rec contains a termination record for a table in the .data section. You can
force the linker to allocate .data and term_rec together:

Example 7-9. Allocate Sections Together

7-42

SECTIONS
text /* Normal output section */
.bss /* Normal output section */
GROUP 0x00001000 : [* Specify a group of sections */
.data /* First section in the group */
term_rec /* Allocated immediately after .data */
}
}

You can use binding, alignment, or named memory to allocate a GROUP in the
same manner as a single output section. In the preceding example, the
GROUP is bound to address 0x00001000. This means that .data is allocated
at 0x00001000, and term_rec follows it in memory.

Note: You Cannot Specify Addresses for Sections Within a GROUP

When you use the GROUP option, binding, alignment, or allocation into
named memory can be specified for the group only. You cannot use binding,
named memory, or alignment for sections within a group.

Special Section Types (DSECT, COPY, and NOLOAD)

7.11 Special Section Types (DSECT, COPY, and NOLOAD)

You can assign three special types to output sections: DSECT, COPY, and
NOLOAD. These types affect the way that the program is treated when it is
linked and loaded. You can assign a type to a section by placing the type after
the section definition. For example:

SECTIONS
secl: load = 0x00002000, type = DSECT {f1.0bj}
sec2: load = 0x00004000, type = COPY {f2.0obj}
sec3: load = 0x00006000, type = NOLOAD {f3.0bj}
}
[The DSECT type creates a dummy section with the following characteris-
tics:

B Itisnotincluded inthe output section memory allocation. It takes up no
memory and is not included in the memory map listing.

B Itcanoverlay other output sections, other DSECTSs, and unconfigured
memory.

B Global symbols defined in a dummy section are relocated normally.
They appear in the output module’s symbol table with the same value
they would have if the DSECT had actually been loaded. These sym-
bols can be referenced by other input sections.

B Undefined external symbols found in a DSECT cause specified
archive libraries to be searched.

B The section’s contents, relocation information, and line number infor-
mation are not placed in the output module.

In the preceding example, none of the sections from f1.obj are allocated,
but all the symbols are relocated as though the sections were linked at
address 0x2000. The other sections can refer to any of the global symbols
in secl.

1 ACOPY sectionis similarto a DSECT section, except thatits contents and
associated information are written to the output module. The .cinit section
that contains initialization tables for the TMS320C6x C compiler has this
attribute under the runtime initialization model.

[ANOLOAD section differs from a normal output section in one respect: the
section’s contents, relocation information, and line number information
are not placed in the output module. The linker allocates space for the
section, and it appears in the memory map listing.

Linker Description 7-43

Default Allocation Algorithm

7.12 Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for build-
ing, combining, and allocating sections. However, any memory locations or
sections that you choose notto specify must still be handled by the linker. The
linker uses default algorithms to build and allocate sections within the specifi-
cations you supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates
output sections as though the definitions in Example 7-10 were specified.

Example 7—-10. Default Allocation for TMS320C6x Devices

MEMORY

FAST_MEM: origin = 0x00000000, length = OXFFFFFFFF

}
SECTIONS
{
text: >FAST_MEM
.const: >FAST_MEM
.data: >FAST_MEM
.bss: >FAST_MEM
.cinit: > FAST_MEM [* For —c and —cr */

All .text input sections are concatenated to form a .text output section in the
executable output file, and all .data input sections are combined to form a .data
output section.

If you use a SECTIONS directive, the linker performs no part of the default
allocation. Allocation is performed according to the rules specified by the
SECTIONS directive and the general algorithm described next in section
7.12.1.

7.12.1 How the Allocation Algorithm Creates Output Sections

7-44

An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition

Method 2 By combining input sections with the same name into an output
section that is not defined in a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this defini-
tion completely determines the section’s contents. (See Section 7.8, The
SECTIONS Directive, on page 7-27 for examples of how to define an output
section’s content.)

Default Allocation Algorithm

If an output section is formed by combining input sections not specified by a
SECTIONS directive, the linker combines all such input sections that have the
same name into an output section with that name. For example, suppose the
files f1.0bj and f2.0bj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section for them. The linker
combines the two Vectors sections from the input files into a single output sec-
tion named Vectors, allocates it into memory, and includes it in the output file.

By default, the linker does not display a message when it creates an output
section that is not defined in the SECTIONS directive. You can use the —w
linker option (see section 7.4.18, Display a Message When an Undefined Out-
put Section Is Created (—w Option), on page 7-17) to cause the linker to display
a message when it creates a new output section.

After the linker determines the composition of all output sections, it must allo-
cate them into configured memory. The MEMORY directive specifies which
portions of memory are configured. If there is no MEMORY directive, the linker
uses the default configuration as shown in Example 7-10. (See Section 7.7,
The MEMORY Directive, on page 7-24 for more information on configuring
memory.)

7.12.2 Reducing Memory Fragmentation

The linker’s allocation algorithm attempts to minimize memory fragmentation.
This allows memory to be used more efficiently and increases the probability
that your program will fit into memory. The algorithm comprises these steps:

1) Each output section for which you have supplied a specific binding
address is placed in memory at that address.

2) Each output section that is included in a specific, named memory range
or that has memory attribute restrictions is allocated. Each output section
is placed into the first available space within the named area, considering
alignment where necessary.

3) Any remaining sections are allocated in the order in which they are
defined. Sections not defined in a SECTIONS directive are allocated in the
order in which they are encountered. Each output section is placed into the
first available memory space, considering alignment where necessary.

Linker Description 7-45

Assigning Symbols at Link Time

7.13 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols
and assign values to them at link time. You can use this feature to initialize a
variable or pointer to an allocation-dependent value.

7.13.1 Syntax of Assignment Statements

7-46

The syntax of assignment statements in the linker is similar to that of assign-
ment statements in the C language:

symbol = expression; assigns the value of expression to symbol
symbol += expression; adds the value of expression to symbol
symbol —= expression; subtractsthe value of expression from symbol
symbol *= expression; multiplies symbol by expression

symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new
symbol and enters it into the symbol table. The expression must follow the
rules defined in section 7.13.3, Assignment Expressions. Assignment
statements must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output
sections. Therefore, if an expression contains a symbol, the address used for
that symbol reflects the symbol’s address in the executable output file.

For example, suppose a program reads data from one of two tables identified
by two external symbols, Tablel and Table2. The program uses the symbol
cur_tab as the address of the current table. The cur_tab symbol must point to
either Tablel or Table2. You could accomplish this in the assembly code, but
you would need to reassemble the program to change tables. Instead, you can
use a linker assignment statement to assign cur_tab at link time:

prog.obj /* Input file */
cur_tab = Tablel, /* Assign cur_tab to one of the tables */

Assigning Symbols at Link Time

7.13.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the
section program counter (SPC) during allocation. The SPC keeps track of the
current location within a section. The linker’s . symbol is analogous to the as-
sembler’s $ symbol. The . symbol can be used only in assignment statements
within a SECTIONS directive because . is meaningful only during allocation
and SECTIONS controls the allocation process. (See Section 7.8, The
SECTIONS Directive, on page 7-27.)

The . symbol refers to the current run address, not the current load address,
of the section.

For example, suppose a program needs to know the address of the beginning
of the .data section. By using the .global directive (see page 4-41), you can
create an external undefined variable called Dstart in the program. Then,
assign the value of . to Dstart:

SECTIONS

{
dfext: {3
data: { Dstart = .; }
.bss: {}

This defines Dstart to be the first linked address of the .data section. (Dstart
is assigned before .data is allocated.) The linker relocates all references to
Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the
SPC within an output section and creates a hole between two input sections.
Any value assigned to . to create a hole is relative to the beginning of the sec-
tion, notto the address actually represented by the . symbol. Holes and assign-
ments to . are described in Section 7.14, Creating and Filling Holes, on page
7-50.

7.13.3 Assignment Expressions

These rules apply to linker expressions:

[Expressions can contain global symbols, constants, and the C language
operators listed in Table 7-2.

J All numbers are treated as long (32-bit) integers.

[Constants are identified by the linker in the same way as by the assembler.
That is, numbers are recognized as decimal unless they have a suffix (H
or h for hexadecimal and Q or g for octal). C language prefixes are also
recognized (O for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

Linker Description 7-47

Assigning Symbols at Link Time

[0 Symbols within an expression have only the value of the symbol's
address. No type-checking is performed.

(1 Linker expressions can be absolute or relocatable. If an expression
contains any relocatable symbols (and 0 or more constants or absolute
symbols), itis relocatable. Otherwise, the expression is absolute. If a sym-
bol is assigned the value of a relocatable expression, it is relocatable; if
it is assigned the value of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 7-2 in order of
precedence. Operators in the same group have the same precedence.
Besides the operators listed in Table 7—2, the linker also has an align operator
that allows a symbol to be aligned on an n-byte boundary within an output sec-
tion (n is a power of 2). For example, the expression

. = align(16);
aligns the SPC within the current section on the next 16-byte boundary.

Because the align operator is a function of the current SPC, it can be used only
in the same context as . —that is, within a SECTIONS directive.

Table 7-2. Groups of Operators Used in Expressions (Precedence)

7-48

Group 1 (Highest Precedence) Group 6
! Logical NOT & Bitwise AND
~ Bitwise NOT
- Negation
Group 2 Group 7
* Multiplication Bitwise OR
/ Division
% Modulus
Group 3 Group 8
+ Addition && Logical AND
- Subtraction
Group 4 Group 9
>> Arithmetic right shift I Logical OR
<< Arithmetic left shift
Group 5 Group 10 (Lowest Precedence)
== Equal to = Assignment
1= Not equal to += A+=B -~ A=A+B
> Greater than -= A-=B - A=A-B
< Less than * = A*=B - A=A*B
<= Less than or equal to /= A/l=B - A=A/B
>= Greater than or equal to

Assigning Symbols at Link Time

7.13.4 Symbols Defined by the Linker

The linker automatically defines several symbols based on which sections are
used in your assembly source. A program can use these symbols at runtime
to determine where a section is linked. Since these symbols are external, they
appear in the linker map. Each symbol can be accessed in any assembly
language module if it is declared with a .global directive (see page 4-41). You
must have used the corresponding section in a source module for the symbol
to be created. Values are assigned to these symbols as follows:

text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.
(It marks the end of uninitialized data.)

The following symbols are defined only for C support when the —c or —cr option
is used.

__STACK_SIZE is assigned the size of the .stack section.

__SYSMEM_SIZE s assigned the size of the .sysmem section.

Linker Description 7-49

Creating and Filling Holes

7.14 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections
that have nothing linked into them. These areas are called holes. In special
cases, uninitialized sections can also be treated as holes. This section
describes how the linker handles holes and how you can fill holes (and
uninitialized sections) with values.

7.14.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An out-
put section contains either:

(1 Raw data for the entire section
(O Noraw data

A section that has raw data is referred to as initialized. This means that the
objectfile contains the actual memory image contents of the section. When the
section is loaded, this image is loaded into memory at the section’s specified
starting address. The .text and .data sections always have raw data if anything
was assembled into them. Named sections defined with the .sect assembler
directive also have raw data.

By default, the .bss section (see page 4-24) and sections defined with the
.usectdirective (see page 4-73) have no raw data (they are uninitialized). They
occupy space in the memory map but have no actual contents. Uninitialized
sections typically reserve space in fast external memory for variables. In the
object file, an uninitialized section has a normal section header and can have
symbols defined in it; no memory image, however, is stored in the section.

7.14.2 Creating Holes

7-50

You can create a hole in an initialized output section. A hole is created when
you force the linker to leave extra space between input sections within an out-
put section. When such a hole is created, the linker must supply raw data for
the hole.

Holes can be created only within output sections. Space can exist between
output sections, but such space is not a hole. To fill the space between output
sections, see section 7.7.2, MEMORY Directive Syntax, on page 7-24.

To create a hole in an output section, you must use a special type of linker
assignment statement within an output section definition. The assignment
statement modifies the SPC (denoted by .) by adding to it, assigning a greater
value to it, or aligning it on an address boundary. The operators, expressions,
and syntaxes of assignment statements are described in Section 7.13, Assign-
ing Symbols at Link Time, on page 7-46.

Creating and Filling Holes

The following example uses assignment statements to create holes in output
sections:

SECTIONS
{

outsect:

filel.obj(.text)

. += 0x0100 /* Create a hole with size 0x0100 */
file2.obj(.text)

. = align(16); /* Create a hole to align the SPC */
file3.obj(.text)

}

The output section outsect is built as follows:

1) The .text section from filel.obj is linked in.

2) The linker creates a 256-byte hole.

3) The .text section from file2.0bj is linked in after the hole.

4) The linker creates another hole by aligning the SPC on a 16-byte
boundary.

5) Finally, the .text section from file3.obj is linked in.

All values assigned to the . symbol within a section refer to the relative address
within the section. The linker handles assignments to the . symbol as if the sec-
tion started at address 0 (even if you have specified a binding address). Con-
sider the statement . = align(16) in the example. This statement effectively
aligns the file3.0bj .text section to start on a 16-byte boundary within outsect.
If outsect is ultimately allocated to start on an address that is not aligned, the
file3.0bj .text section will not be aligned either.

The . symbol refers to the current run address, not the current load address,
of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid
to use the —= operator in an assignment to the . symbol. The most common
operators used in assignments to the . symbol are += and align.

If an output section contains all input sections of a certain type (such as .text),
you can use the following statements to create a hole at the beginning or end
of the output section.

text: { .+=0x0100;} /* Hole at the beginning */

data: {

*(.data)
. +=0x0100;} /* Hole at the end */

Linker Description 7-51

Creating and Filling Holes

7.14.3 Filling Holes

7-52

Another way to create a hole in an output section is to combine an uninitialized
section with an initialized section to form a single output section. /n this case,
the linker treats the uninitialized section as a hole and supplies data for it. The
following example illustrates this method:

SECTIONS
{

outsect:

filel.obj(.text)
filel.obj(.bss) /* This becomes a hole */

}
}
Because the .text section has raw data, all of outsect must also contain raw
data. Therefore, the uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initial-
ized sections. If several uninitialized sections are linked together, the resulting
output section is also uninitialized.

When a hole exists in an initialized output section, the linker must supply raw
datatofillit. The linker fills holes with a 32-bit fill value that is replicated through
memory until it fills the hole. The linker determines the fill value as follows:

1) Ifthe holeis formed by combining an uninitialized section with an initialized
section, you can specify a fill value for the uninitialized section. Follow the
section name with an = sign and a 32-bit constant. For example:

SECTIONS
{

outsect:

filel.obj(.text)
file2.0bj(.bss) = OxFFOOFFOQ0 /* Fill this hole */
[* with OXFFOOFFO0O */

}

2) You can also specify a fill value for all the holes in an output section by
supplying the fill value after the section definition:

SECTIONS
{
outsect: fill = OXFFOOFFO00
/* Fills holes with 0xFFOOFFOO0 */

. += 0x0010; /* This creates a hole */
filel.obj(.text)
filel.obj(.bss) /* This creates another hole */
}
}

Creating and Filling Holes

3) Ifyoudo not specify an initialization value for a hole, the linker fills the hole
with the value specified with the —f option (see section 7.4.5, Set Default
Fill Value (—ffill_value Option), on page 7-10). For example, suppose the
command file link.cmd contains the following SECTIONS directive:

SECTIONS

text: { .= 0x0100; } /* Create a 100 - word hole */
}

Now invoke the linker with the —f option:
Inkéx —f OXFFFFFFFF link.cmd
This fills the hole with OXFFFFFFFF.

4) If you do not invoke the linker with the —f option or otherwise specify a fill
value, the linker fills holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole
is identified in the link map along with the value the linker uses to fill it.

7.14.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an
explicitfill value foritin the SECTIONS directive. This causes the entire section
to have raw data (the fill value). For example:

SECTIONS

.bss: fill =0x12341234 /* Fills .bss with 0x12341234 */
}

Note: Filling Sections

Because filling a section (even with 0s) causes raw data to be generated for
the entire section in the output file, your output file will be very large if you
specify fill values for large sections or holes.

Linker Description 7-53

Partial (Incremental) Linking

7.15 Partial (Incremental) Linking

7-54

An output file that has been linked can be linked again with additional modules.
This is known as partial linking or incremental linking. Partial linking allows you
to partition large applications, link each part separately, and then link all the
parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

a

The intermediate files produced by the linker must have relocation infor-
mation. Use the —r option when you link the file the first time. (See section
7.4.1, Relocation Capabilities (—a and —r Options), on page 7-7.)

Intermediate files must have symbolic information. By default, the linker
retains symbolic information in its output. Do not use the —s option if you
plan to relink a file, because —s strips symbolic information from the output
module. (See section 7.4.15, Strip Symbolic Information (—s Option), on
page 7-16.)

Intermediate link steps should be concerned only with the formation of out-
put sections and not with allocation. All allocation, binding, and MEMORY
directives should be performed in the final link step.

If the intermediate files have global symbols that have the same name as
global symbols in other files and you want them to be treated as static
(visible only within the intermediate file), you must link the files with the —h
option (see section 7.4.7, Make All Global Symbols Static (—h Option), on
page 7-10).

If you are linking C code, do not use —c or —cr until the final link step. Every
time you invoke the linker with the —c or —cr option, the linker attempts to
create an entry point. (See section 7.4.3, C Language Options (—c and —cr
Options), on page 7-9.)

Partial (Incremental) Linking

The following example shows how you can use partial linking:

Step 1: Link the file filel.com; use the —r option to retain relocation informa-
tion in the output file tempoutl.out.
Ink6x —r —o tempout1 filel.com

filel.com contains:

SECTIONS

ssl: {
f1.obj
f2.0bj

fn.obj
}
}

Step 2: Link the file file2.com; use the —r option to retain relocation informa-
tion in the output file tempout2.out.
Ink6x —r —o tempout?2 file2.com
file2.com contains:

SECTIONS

{
ss2: {

gl.obj
g2.obj

gin.obj
}
}

Step 3: Link tempoutl.out and tempout2.out.

Ink6x —m final.map —o final.out tempoutl.out tempout2.out

Linker Description 7-55

Linking C Code

7.16 Linking C Code

The C compiler produces assembly language source code that can be assem-
bled and linked. For example, a C program consisting of modules prog1l,
prog2, etc., can be assembled and then linked to produce an executable file
called prog.out:

Ink6x —c —o prog.out progl.obj prog2.obj ... rts6201.lib

The —c option tells the linker to use special conventions that are defined by the
C environment. The archive libraries rts6201.lib and rts6701.lib contain C run-
time-support functions.

For more information about the TMS320C6x C language, including the run-
time environment and runtime-support functions, see the TMS320C6x Opti-
mizing C Compiler User’s Guide.

7.16.1 Runtime Initialization

7-56

All C programs must be linked with an object module called boot.obj. The sym-
bol _c_int00 is defined as the program entry point. The _c_int00 symbol is the
start of the C boot routine in boot.obj; referencing _c_intO0 ensures that
boot.objis automatically linked in from the runtime-support libraries rts6201.lib
rts6701.lib, rts6201e.lib, and rts6701e.lib. When a program begins running, it
executes boot.obj first. The boot.obj symbol contains code and data for initial-
izing the runtime environment. The module performs the following tasks:

[Sets up the system stack

(1 Processes the runtime initialization table and autoinitializes global vari-
ables (when the linker is invoked with the —c option)

(1 Disables interrupts and calls _main

The runtime-support object libraries, rts6201.lib, rts6701.lib, rts6201e.lib, and
rts6701e.lib, contain boot.obj. You can:

[0 Use the archiver to extract boot.obj from the library and then link the
module in directly.

[Include rts6201.lib, rts6701.lib, rts6201e.lib, and rts6701e.lib as input files
(the linker automatically extracts boot.obj when you use the —c or —cr
option).

Linking C Code

7.16.2 Object Libraries and Runtime Support

The TMS320C6x Optimizing C Compiler User’s Guide describes additional
runtime-support functions that are included in rts.src. If your program uses any
of these functions, you must link rts6201.lib rts6701.lib, rts6201e.lib, and
rts6701e.lib with your object files.

You can also create your own object libraries and link them. The linker includes
and links only those library members that resolve undefined references.

7.16.3 Setting the Size of the Stack and Heap Sections

The C language uses two uninitialized sections called .sysmem and .stack for
the memory pool used by the malloc() functions and the runtime stacks,
respectively. You can set the size of these by using the —heap or —stack option
and specifying the size of the section as a 4-byte constant immediately after
the option. The default size for both, if the options are not used, is 1K words.

See section 7.4.8, Define Heap Size (—heap size Option), on page 7-11 and
section 7.4.16, Define Stack Size (—stack size Option), on page 7-16 for more
information on setting stack sizes.

7.16.4 Autoinitialization of Variables at Runtime

Autoinitializing variables at runtime is the default method of autoinitialization.
To use this method, invoke the linker with the —c option.

Using this method, the .cinit section is loaded into memory along with all the
other initialized sections. The linker defines a special symbol called cinit that
points to the beginning of the initialization tables in memory. When the program
begins running, the C boot routine copies data from the tables (pointed to by
.cinit) into the specified variables in the .bss section. This allows initialization
data to be stored in slow external memory and copied to fast external memory
each time the program starts.

Figure 7-5 illustrates autoinitialization at runtime. Use this method in any sys-
tem where your application runs from code burned into slow external memory.

Linker Description 7-57

Linking C Code

Figure 7-5. Autoinitialization at Runtime

7-58

Object file

.cinit
section

A4

Loader

cinit

Memory

A

Initialization
tables
(SLOW_MEM)

Boot
routine

.bss
section
(FAST_MEM)

Linking C Code

7.16.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot
time and by saving the memory used by the initialization tables. To use this
method, invoke the linker with the —cr option.

When you use the —cr linker option, the linker sets the STYP_COPY bit in the
.cinit section’s header. This tells the loader not to load the .cinit section into
memory. (The .cinit section occupies no space in the memory map.) The linker
also sets the cinit symbol to —1 (normally, cinit points to the beginning of the
initialization tables). This indicates to the boot routine that the initialization
tables are not present in memory; accordingly, no runtime initialization is per-
formed at boot time.

A loader must be able to perform the following tasks to use initialization at load
time:

(1 Detect the presence of the .cinit section in the object file.

1 Determine that STYP_COPY is set in the .cinit section header, so that it
knows not to copy the .cinit section into memory.

] Understand the format of the initialization tables.

Figure 7—6 illustrates the initialization of variables at load time.

Figure 7—6. Initialization at Load Time

Object file Memory
.cinit
section | Loader
5 .bss
section

Linker Description 7-59

Linking C Code

7.16.6 The —c and —cr Linker Options

The following list outlines what happens when you invoke the linker with the
—C or —cr option.

(1 The symbol c int00 is defined as the program entry point. The _c_int00
symbol is the start of the C boot routine in boot.obj; referencing _c_int00
ensures that boot.obj is automatically linked in from the runtime-support
libraries rts6201.lib rts6701.lib, rts6201e.lib, and rts6701e.lib.

[0 The .cinit output section is padded with a termination record to designate
to the boot routine (autoinitialize at runtime) or the loader (initialize at load
time) when to stop reading the initialization tables.

(1 When you autoinitialize at runtime (—c option), the linker defines cinit as
the starting address of the .cinit section. The C boot routine uses this sym-
bol as the starting point for autoinitialization.

(1 When you initialize at load time (—cr option):

B The linker sets cinit to —1. This indicates that the initialization tables
are not in memory, so no initialization is performed at runtime.

B The STYP_COPY flag (0010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
initialization directly and not to load the .cinit section into memory. The
linker does not allocate space in memory for the .cinit section.

7-60

Linker Example

7.17 Linker Example

This example links three object files named demo.obj, ctrl.obj, and tables.obj
and creates a program called demo.out.

Assume that target memory has the following configuration:

Program Memory

Address Range Contents
0x00000000 to 0x00001000 SLOW_MEM
0x00001000 to 0x00002000 FAST_MEM
0x08000000 to 0x08000400 EEPROM

The output sections are constructed from the following input sections:

[0 Executable code, contained in the .text sections of demo.obj, ctrl.obj, and
tables.obj, must be linked into FAST_MEM.

[A set of interrupt vectors, contained in the int_vecs section of tables.obj,
must be linked at address 0x00000000.

[J A table of coefficients, contained in the .data section of tables.obj, must
be linked into EEPROM. The remainder of block EEPROM must be initial-
ized to the value OxFFOOFFOO.

[Asetof variables, contained in the .bss section of ctrl.obj, must be linked
into SLOW_MEM and preinitialized to 0x00000100.

[The .bss sections of demo.obj and tables.obj must be linked into
SLOW_MEM.

Example 7-11 shows the linker command file for this example. Example 7-12
shows the map file.

Linker Description 7-61

Linker Example

Example 7-11. Linker Command File, demo.cmd

/ /

[rrxx Specify Linker Options xxxx|

/ * * /
—e SETUP [* Define the program entry point ~ */
—0 demo.out /* Name the output file */

—m demo.map [* Create an output map */
[rrxx Specify the Input Files rrxk|
demo.obj

ctrl.obj

tables.obj

[rrxx Specify the Memory Configuration wrxk|
[** * Fekkkkekokok * Fekkkkckkekokok |
MEMORY

FAST_MEM : org = 0x00000000 len = 0x00001000
SLOW_MEM : org = 0x00001000 len = 0x00001000
EEPROM : org = 0x08000000 len = 0x00000400

}

/ * Kkkkkkkkkkk * Kkkkkkkk /

[rrxx Specify the Output Sections wrxx|
[riRrk Fekkkkkkokk Ferkkkkk |
SECTIONS

text :{} >FAST_MEM /* Link all .text sections into ROM */
int_vecs : {} > 0x0 /* Link interrupt vectors at 0x0 */
.data : /* Link .data sections */

tables.obj(.data)

. = 0x400; /* Create hole at end of block */
} = OXFFOOFF00 > EEPROM /* Fill and link into EEPROM */
ctrl_vars: /* Create new ctrl_vars section */

ctrl.obj(.bss)
} = 0x00000100 > SLOW_MEM /* Fill with 0x100 and link into RAM */
.bss :{} > SLOW_MEM /* Link remaining .bss sections into RAM */

/ /
[rER* End of Command File xEEK |
/ *% *% * * *% *% *% * *% *% *% /

Invoke the linker by entering the following command:
Ink6x demo.cmd

This creates the map file shown in Example 7-12 and an output file called
demo.out that can be run on a TMS320C6x.

7-62

Linker Example

Example 7-12. Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>
ENTRY POINT SYMBOL.: 0

MEMORY CONFIGURATION

name origin length used attributes fill

FAST_MEM 00000000 000001000 00000078 RWIX
SLOW_MEM 00001000 000001000 00000502 RWIX
EEPROM 08000000 000000400 00000400 RWIX

SECTION ALLOCATION MAP

output attributes/
section page origin length input sections

text 0 00000000 00000064
00000000 00000030 demo.obj (.text)
00000030 00000000 tables.obj (.text)
00000030 00000010 —HOLE— [fill = 00000000]
00000040 00000024 ctrl.obj (.text)

int_vecs O 00000000 00000000 UNINITIALIZED

.data 0 08000000 00000400
08000000 00000004 tables.obj (.data)
08000004 000003fc —HOLE— [fill = ff00ff00]
08000400 00000000 ctrl.obj (.data)
08000400 00000000 demo.obj (.data)

ctrl_vars 0 00001000 00000500
00001000 00000500 ctrl.obj (.bss) [fill = 00000100]

.bss 0 00001500 00000002 UNINITIALIZED
00001500 00000002 demo.obj (.bss)
00001502 00000000 tables.obj (.bss)

.ntvecs 0 00000064 00000014
00000064 00000014 tables.obj (.intvecs)

GLOBAL SYMBOLS

address name address name
00001500 $bss 00000000 .text
00001500 .bss 00000000 _x42
08000000 .data 00000018 _SETUP
00000000 .text 00000040 _fill_tab
00000018 _SETUP 00000064 etext
00000040 _fill_tab 00001500 $bss
00000000 _x42 00001500 .bss
08000400 edata 00001502 end
00001502 end 08000000 gvar
00000064 etext 08000000 .data
08000000 gvar 08000400 edata

[11 symbols]

Linker Description

7-63

Chapter 8

Cross-Reference Lister Description

The TMS320C6x cross-reference lister is a debugging tool. This utility accepts
linked object files as input and produces a cross-reference listing as output.
This listing shows symbols, their definitions, and their references in the linked
source files.

Topic Page
8.1 Producing a Cross-Reference Listing — 84 |
8.2 Invoking the Cross-Reference Lister 8.-:E|

8.3 Cross-Reference Listing Example

8-1

Producing a Cross-Reference Listing

8.1 Producing a Cross-Reference Listing

Figure 8-1 illustrates the steps required to produce a cross-reference listing.

Figure 8—1. The Cross-Reference Lister in the TMS320C6x Software Development Flow

Step 1: Assembler First, invoke the assembler with the —x option.
source file

This option produces a cross-reference table
in the listing file and adds to the object file
cross-reference information. By default, the
Assembler assembler cross-references only global sym-
bols. If you use the —s option when invoking
the assembler, it cross-references local

S symbols as well.
| object }
file
Step 2: Link the object file (.obj) to obtain an execut-
S able object file (.out).
Linker

Step 3: Invoke the cross-reference lister. The follow-
SN2 ing section provides the command syntax for

Cross-reference | invoking the cross-reference lister utility.
lister

Cross-reference
listing

Invoking the Cross-Reference Lister

8.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct
options and then linked into an executable file. Assemble the assembly lan-
guage files with the —x option. This option creates a cross-reference listing and
adds cross-reference information to the object file. By default the assembler
cross-references only global symbols, but if the assembler is invoked with the
—s option, local symbols are also added. Link the object files to obtain an
executable file.

To invoke the cross-reference lister, enter the following:

xref6éx [options] [input filename [output filename]]

xreféx is the command that invokes the cross-reference utility.

options identifies the cross-reference lister options you want to
use. Options are not case sensitive and can appear any-
where on the command line following the command. Pre-
cede each option with a hyphen (). The cross-reference
lister options are as follows:

- (lowercase L) specifies the number of lines per
page for the output file. The format of the —I option
is —lnum, where num is a decimal constant. For
example, —I30 sets the number of lines per page in
the output file to 30. The space between the option
and the decimal constant is optional. The defaultis
60 lines per page.

—q suppresses the banner and all progress informa-
tion (run quiet).
input filename is a linked object file. If you omit the input filename, the
utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit
the output filename, the default filename is the input file-
name with an .xrf extension.

Cross-Reference Lister Description 8-3

Cross-Reference Listing Example

8.3 Cross-Reference Listing Example

The following is an example of cross-reference listing:

Example 8-1. Cross-Reference Listing

Symbol: _SETUP

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
demo.asm EDEF '00000018 00000018 18 13 20
Symbol: _fill_tab

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
ctrl.asm EDEF '00000000 00000040 10 5

Symbol: _x42

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn
demo.asm EDEF 00000000 00000000 7 4 18

Symbol: gvar

Filename RTYP AsmVal LnkVal DefLn RefLn RefLn RefLn

tables.asm EDEF "00000000 08000000 11 10

Cross-Reference Listing Example

The terms defined below appear in the preceding cross-reference listing:

Symbol
Filename

RTYP

AsmVal

LnkVal

DefLn
RefLn

Name of the symbol listed
Name of the file where the symbol appears

The symbol’s reference type in this file. The possible refer-
ence types are:

STAT The symbol is defined in this file and is not
declared as global.

EDEF The symbol is defined in this file and is declared
as global.

EREF The symbol is not defined in this file but is refer-
enced as global.

UNDF The symbol is not defined in this file and is not
declared as global.

This hexadecimal number is the value assigned to the
symbol at assembly time. A value may also be preceded
by a character that describes the symbol's attributes.
Table 81 lists these characters and names.

This hexadecimal number is the value assigned to the
symbol after linking.

The statement number where the symbol is defined.

The line number where the symbol is referenced. If the line
number is followed by an asterisk (*), then that reference
can modify the contents of the object. A blank in this col-
umn indicates that the symbol was never used.

Table 8-1. Symbol Attributes in Cross-Reference Listing

Character

Meaning

Symbol defined in a .text section
Symbol defined in a .data section
Symbol defined in a .sect section

Symbol defined in a .bss or .usect section

Cross-Reference Lister Description 8-5

Chapter 9

Hex Conversion Utility Description

The TMS320C6x assembler and linker create object files that are in common
object file format (COFF). COFF is a binary object file format that encourages
modular programming and provides powerful and flexible methods for manag-
ing code segments and target system memory.

Most EPROM programmers do not accept COFF object files as input. The hex
conversion utility converts a COFF object file into one of several standard
ASCII hexadecimal formats, suitable for loading into an EPROM programmer.
The utility is also useful in other applications requiring hexadecimal conversion
of a COFF object file (for example, when using debuggers and loaders).

The hex conversion utility can produce these output file formats:

(1 ASCII-Hex, supporting 16-bit addresses

1 Extended Tektronix (Tektronix)

1 Intel MCS-86 (Intel)

(1 Motorola Exorciser (Motorola-S), supporting 16-bit addresses

[Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

Topic Page
9.1 The Hex Conversion Utility’s Role in the

Software Development FIOW —ouorieeteee e 9

9.2 Invoking the Hex Conversion Utility — 9:
9.3 Understanding Memory Widths ~ a-f]
9.4 The ROMS DireCtiVet 9-14
9.5 The SECTIONS DIreCtiVevuutiiii e 9-20
9.6 Assigning Output Filenames —c.iiiirinani...d 9-p2 |
9.7 Image Mode and the fill Option 9
9.8 Controlling the ROM Device Address —coviiiieinn... 9-
9.9 Description of the Object Formats —c..oveune.... 9:
9.10 Hex Conversion Utility Error Message — 9-

9-1

The Hex Conversion Utility’s Role in the Software Development Flow

9.1 The Hex Conversion Utility’s Role in the Software Development Flow

Figure 9-1 highlights the role of the hex conversion utility in the software
development process.

Figure 9-1. The Hex Conversion Utility in the TMS320C6x Software Development Flow

: c o
. source o
: files .
« Macro -« []
s source . . Assembly .
° fles - C compiler . optimizer |
¢ source ¢
Archiver + Assembler « Assembly
\TJ . source . optimizer
[] .
. Macro v s "
* library ° . Assembly- ¢
° ° Assembler . Optlr_nlzed .
: file :
. COFF - Library-build
. . ™
Archiver + object - utility
: fiIeS : f
— .) .
. v ¢ Runtime-
: Library of - r— e support .
< object - ») « library <
.) . Linker
. files .
« Executable «
. COFF . .
: : file : Debugging
Hex conversion tools
utility
\ 4
EPROM (Cross-_reference) TMS320C6x
programmer lister

| T

9-2

Invoking the Hex Conversion Ultility

9.2 Invoking the Hex Conversion Utility
There are two basic methods for invoking the hex conversion utility:

1 Specifythe options and filenames onthe command line. The following
example converts the file firmware.out into TI-Tagged format, producing
two output files, firm.Isb and firm.msb.

hex6x —t firmware —o firm.Isb —o firm.msb
[Specify the options and filenames in a command file. You can create
a batch file that stores command line options and filenames for invoking

the hex conversion utility. The following example invokes the utility using
a command file called hexutil.cmd:

hex6x hexutil.cmd

In addition to regular command line information, you can use the hex
conversion utility ROMS and SECTIONS directives in a command file.

9.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

hex6x [options] filename

hex6x is the command that invokes the hex conversion utility.

options supplies additional information that controls the hex conversion
process. You can use options on the command line or in a com-
mand file. Table 9-1 lists the basic options.

[Alloptions are preceded by a hyphen and are not case sensi-
tive.

[Several options have an additional parameter that must be
separated from the option by at least one space.

[Options with multicharacter names must be spelled exactly
as shown in this document; no abbreviations are allowed.

[Options are not affected by the order in which they are used.
The exception to this rule is the —q (quiet) option, which must
be used before any other options.
filename names a COFF object file or a command file (for more informa-
tion, see section 9.2.2, Invoking the Hex Conversion Utility With

a Command File, on page 9-5). If you do not specify a filen-
name, the utility prompts you for one.

Hex Conversion Utility Description 9-3

Invoking the Hex Conversion Ultility

Table 9—-1. Basic Hex Conversion Utility Options

9-4

General Options Option Description Page
Control the overall —byte Number output file locations ~ 9-26
operation of the hex by bytes rather than using
conversion utility target addressing
—map filename Generate a map file 9-18
—o filename Specify an output filename 9-22
—q Run quietly (when used, it 9-5
must appear before other
options)
Image Options Option Description Page
Create a continuous —fill value Fill holes with value 9-25
image of a range of
target memory —image Specify image mode 9-24
—zero Reset the address originto 9-26
0 in image mode
Memory Options Option Description Page
Configurethe memory —memwidth value Define the system memory 9-8
widths for your output word width (default 32 bits)
files
—romwidth value Specify the ROM device 9-10
width (default depends on
format used)
—order L Output file is in little endian ~ 9-12
format
—order M Output file is in big endian 9-12
format
Output Formats Option Description Page
Specify the output for- -a Select ASCII-Hex 9-28
mat
—i Select Intel 9-29
-m Select Motorola-S 9-30
—t Select TI-Tagged 9-31
—X Select Tektronix (default) 9-32

Invoking the Hex Conversion Ultility

9.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with
the same input files and options. It is also useful if you want to use the ROMS
and SECTIONS hex conversion utility directives to customize the conversion
process.

Command files are ASCII files that contain one or more of the following:

[J Options and filenames. These are specified in a command file in exactly
the same manner as on the command line.

(1 ROMS directive. The ROMS directive defines the physical memory con-
figuration of your system as a list of address-range parameters. (For more
information, see Section 9.4, The ROMS Directive, on page 9-14.)

[0 SECTIONS directive. The hex conversion utility SECTIONS directive
specifies which sections from the COFF object file are selected. (For more
information, see Section 9.5, The SECTIONS Directive, on page 9-20.)

[J Comments. You can add comments to your command file by using the /*
and */ delimiters. For example:

/* This is a comment. */

To invoke the utility and use the options you defined in a command file, enter:
hex6x command_filename

You can also specify other options and files on the command line. For exam-
ple, you could invoke the utility by using both a command file and command
line options:

hex6x firmware.cmd —map firmware.mxp

The order in which these options and filenames appear is not important. The
utility reads all input from the command line and all information from the com-
mand file before starting the conversion process. However, if you are using the
—q option, it must appear as the first option on the command line or in a com-
mand file.

The —q option suppresses the hex conversion utility’'s normal banner and
progress information.

Hex Conversion Utility Description 9-5

Invoking the Hex Conversion Ultility

[J Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
—t [* TI-Tagged */
—o firm.Isb /* output file */
—o firm.msb /* output file */

You can invoke the hex conversion utility by entering:

hex6x firmware.cmd

(1 Thisexample shows howto convertafile called appl.outinto eight hexfiles
in Intel format. Each output file is one byte wide and 4K bytes long.
appl.out [*input file */

—i /* Intel format */
—map appl.mxp /* map file */

ROMS

ROWZ1: origin=0x00000000 len=0x4000 romwidth=8
files={ appl.u0 appl.ul appl.u2 appl.u3}
ROW?2: origin=0x00004000 len=0x4000 romwidth=8
files={ appl.u4 appl.u5 appl.ué appl.u7 }
}

SECTIONS
{ .text, .data, .cinit, .sectl, .vectors, .const:

}

Understanding Memory Widths

9.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by
allowing you to specify memory and ROM widths. In order to use the hex con-
version utility, you must understand how the utility treats word widths. Three
widths are important in the conversion process:

[Target width
J Memory width
1 ROM width

The terms target word, memory word, and ROM word refer to a word of such
a width.

Figure 9-2 illustrates the two separate and distinct phases of the hex conver-
sion utility’s process flow.

Figure 9-2. Hex Conversion Utility Process Flow

Raw data in COFF files is repre-
/ sented in the target's address-

.) able units. For the TMS320C6x,
(COFF input file) this is 32 bits.

The raw data in the COFF file
is grouped into words according

Phase | to the size specified by the
—memuw